Уточнить поиск
Результаты 961-970 из 6,548
WITHDRAWN: New insights into the bioaccumulation of persistent organic pollutants in remote alpine lakes located in Himalayas, Pakistan Полный текст
2020
Nawab, Javed | Wang, Xiaoping | K̲h̲ān, Sardār | Tang, Yu-Ting | Rahman, Ziaur | ʻAlī, ʻĀbid | Dotel, Jagdish | Li, Gang
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause.The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Показать больше [+] Меньше [-]Spatial mapping and size distribution of oxidative potential of particulate matter released by spatially disaggregated sources Полный текст
2020
Massimi, Lorenzo | Ristorini, Martina | Simonetti, Giulia | Frezzini, Maria Agostina | Astolfi, Maria Luisa | Canepari, Silvia
The ability of particulate matter (PM) to induce oxidative stress is frequently estimated by acellular oxidative potential (OP) assays, such as ascorbic acid (AA) and 1,4-dithiothreitol (DTT), used as proxy of reactive oxygen species (ROS) generation in biological systems, and particle-bound ROS measurement, such as 2′,7′-dichlorodihydrofluorescein (DCFH) assay. In this study, we evaluated the spatial and size distribution of OP results obtained by three OP assays (OPᴬᴬ, OPᴰCFᴴ and OPᴰᵀᵀ), to qualitative identify the relative relevance of single source contributions in building up OP values and to map the PM potential to induce oxidative stress in living organisms. To this aim, AA, DCFH and DTT assays were applied to size-segregated PM samples, collected by low-pressure cascade impactors, and to PM₁₀ samples collected at 23 different sampling sites (about 1 km between each other) in Terni, an urban and industrial hot-spot of Central Italy, by using recently developed high spatial resolution samplers of PM, which worked in parallel during three monitoring periods (February, April and December 2017). The sampling sites were chosen for representing the main spatially disaggregated sources of PM (vehicular traffic, rail network, domestic heating, power plant for waste treatment, steel plant) present in the study area. The obtained results clearly showed a very different sensitivity of the three assays toward each local PM source. OPᴬᴬ was particularly sensitive toward coarse particles released from the railway, OPᴰCFᴴ was sensible to fine particles released from the steel plant and domestic biomass heating, and OPᴰᵀᵀ was quite selectively sensitive toward the fine fraction of PM released by industrial and biomass burning sources.
Показать больше [+] Меньше [-]Different surface charged plastic particles have different cotransport behaviors with kaolinite ☆particles in porous media Полный текст
2020
Li, Meng | He, Lei | Zhang, Xiangwei | Rong, Haifeng | Tong, Meiping
The wide utilization of plastic related products leads to the ubiquitous presence of plastic particles in natural environments. Plastic particles could interact with kaolinite (one type of typical clay particles abundant in environments) and form plastic-kaolinite heteroaggregates. The fate and transport of both plastic particles and kaolinite particles thus might be altered. The cotransport and deposition behaviors of micron-sized plastic particles (MPs) with different surface charge (both negative and positive surface charge) with kaolinite in porous media in both 5 and 25 mM NaCl solutions were investigated in present study. Both types of MPs (negatively charged carboxylate-modified MPs (CMPs) and positively charged amine-modified MPs (AMPs)) formed heteroaggregates with kaolinite particles under both solution conditions examined, however, CMPs and AMPs exhibited different cotransport behaviors with kaolinite. Specifically, the transport of both CMPs and kaolinite was increased under both ionic strength conditions when kaolinite and CMPs were copresent in suspensions. While, when kaolinite and positively charged AMPs were copresent in suspensions, negligible transport of both kaolinite and AMPs were observed under examined salt solution conditions. The competition deposition sites by kaolinite (the portion suspending in solution) with CMPs-kaolinite heteroaggregates led to the increased transport both CMPs and kaolinite when both types of colloids were copresent. In contrast, the formation of larger sized AMPs-kaolinite heteroaggregates with surface charge heterogeneity led to the negligible transport of both kaolinite and AMPs when they were copresent in suspensions. The results of this study show that when plastic particles and kaolinite particles are copresent in natural environments, their interaction with each other will affect their transport behaviors in porous media. The alteration in the transport of MPs or kaolinite (either increased or decreased transport) is highly correlated with the surface charge of MPs.
Показать больше [+] Меньше [-]Mn2+ effect on manganese oxides (MnOx) nanoparticles aggregation in solution: Chemical adsorption and cation bridging Полный текст
2020
Cheng, Haijun | Yang, Tao | Jiang, Jin | Lu, Xiaohui | Wang, Panxin | Ma, Jun
Manganese oxides (MnOₓ) and Mn²⁺ usually co-exist in the natural environment, as well as in water treatments for Mn²⁺ removal. Therefore, it is necessary to investigate the influence of Mn²⁺ on the stability of MnOₓ nanoparticles, as it is vital to their fate and reactivity. In this study, we used the time-resolved dynamic light scattering technique to study the influence of Mn²⁺ on the initial aggregation kinetics of MnOₓ nanoparticles. The results show that Mn²⁺ was highly efficient in destabilizing MnOₓ nanoparticles. The critical coagulation concentration ratio of Mn²⁺ (0.3 mM) to Na⁺ (30 mM) was 2⁻⁶.⁶⁴, which is beyond the ratio range indicated by the Schulze-Hardy rule. This is due to the coordination bond formed between Mn²⁺ and the surface O of MnOₓ, which could efficiently decrease the negative surface charge of MnOₓ. As a result, in the co-presence of Mn²⁺ and Na⁺, a small amount of Mn²⁺ (5 μM) could efficiently neutralize the negative charge of MnOₓ, thereby decreasing the amount of Na⁺, which mainly destabilized nanoparticles through electric double-layer compression, required to initiate aggregation. Further, Mn²⁺ behaved as a cation bridge linking both the negatively charged MnOₓ and humic acid, thereby increasing the stability of the MnOₓ nanoparticles as a result of the steric repulsion of the adsorbed humic acid. The results of this study enhance the understanding of the stability of the MnOₓ nanoparticles in the natural environment, as well as in water treatments.
Показать больше [+] Меньше [-]Prenatal exposure levels of polybrominated diphenyl ethers in mother-infant pairs and their transplacental transfer characteristics in Uganda (East Africa) Полный текст
2020
Matovu, Henry | Ssebugere, Patrick | Sillanpää, Mika
Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants with adverse effects on the foetus and infants. This study aimed at assessing in utero exposure levels and transplacental transfer (TPT) characteristics of BDE congeners in primiparous mothers from Kampala, the capital city of Uganda. Paired human samples (30 placenta and 30 cord blood samples) were collected between April and June 2018; and analysed for a suite of 24 tri-to deca-BDE congeners. Extraction was carried out using liquid-liquid extraction and sonication for cord blood and placenta samples, respectively. Clean-up was done on a solid phase (SPE) column and analysis was performed using gas chromatography/mass spectrometry (GC/MS). Total (∑) PBDEs were 0.25–30.9 ng/g lipid weight (lw) (median; 7.11 ng/g lw) in placental tissues and 1.65–34.5 ng/g lw (median; 11.9 ng/g lw) in cord blood serum, with a mean difference of 1.26 ng/g lw between the compartments. Statistical analysis showed no significant difference between the levels of PBDEs in cord blood and placenta samples (Wilcoxon signed rank test, p = 0.665), possibly because foetus and neonates have poorly developed systems to metabolise the pollutants from the mothers. BDE-209 was the dominant congener in both matrices (contributed 40.5% and 51.2% to ∑PBDEs in placenta and cord blood, respectively), suggesting recent and on-going maternal exposure to deca-BDE formulation. Non-significant associations were observed between ∑PBDEs in maternal placenta and maternal age, household income, pre-pregnancy body mass index (BMI), and beef/fish consumption. This suggested on-going exposure to PBDEs through multiple sources such as dust from indoor/outdoor environments and, ingestion of other foods. Based on absolute concentrations, the extent of transplacental transport was greater for higher congeners (BDE-209, -206 and −207) than for lower ones (such as BDE-47), suggesting alternative TPT mechanisms besides passive diffusion. More studies with bigger sample sizes are required to confirm these findings.
Показать больше [+] Меньше [-]Transgenic insect-resistant Bt cotton expressing Cry1Ac/CpTI does not affect the mirid bug Apolygus lucorum Полный текст
2020
Niu, Lin | Liu, Fang | Zhang, Shuai | Luo, Junyu | Zhang, Lijuan | Ji, Jichao | Gao, Xueke | Ma, Weihua | Cui, Jinjie
Common varieties of genetically modified (GM) cotton increasingly display insect-resistant properties via expression of bacterial-derived toxins from Bacillus thuringiensis (Bt). This necessitates a deeper understanding of the possible effects of these crops on non-target insects. The mirid bug Apolygus lucorum is a major pest in cotton production in China, however, the effect of GM cotton on this non-target species is currently virtually unknown. This insect is exposed to these transgenic plants by consuming genetically modified (GM) leaves. In this study, laboratory experiments were conducted to assess the toxicity of CCRI41 and CCRI45, (genetically modified cotton varieties which express the toxins Cry1Ac and CpTI (Cowpea Trypsin Inhibitor)) on nymphs and adults of A. lucorum. There was no detectable increase in mortality after A. lucorum fed on GM cotton leaves for 20 days. While we detected trace amounts of Cry1Ac proteins in both A. lucorum nymphs and adults (<10 ng/g fresh weight), the expression of genes related to detoxification did not detectably differ from those feeding on non-GM cotton. Our binding assays did not show Cry1Ac binding to receptors on the midgut brush border membrane from either A. lucorum nymphs or adults. Our findings collectively indicate that feeding on leaves of the GM cotton varieties CCRI41 and CCRI45 have few toxic effects on A. lucorum.
Показать больше [+] Меньше [-]Novel understanding of toxicity in a life cycle perspective – The mechanisms that lead to population effect – The case of Ag (nano)materials Полный текст
2020
Rodrigues, Natália P. | Scott-Fordsmand, Janeck J. | Amorim, Mónica J.B.
Silver (Ag) is amongst the most well studied nanomaterials (NMs), although most studies have only dealt with a single AgNM at a time and one biological endpoint. We here integrate the results of various testing-tools (endpoints) using a terrestrial worm, the standard ecotoxicological model organism Enchytraeus crypticus. Exposure spanned both water and soil exposure, it covered all life stages (cocoons, juveniles and adults), varying exposure durations (1-2-3-4-5-21 days), and covered 5 biological endpoints: hatching success, survival, reproduction, avoidance and gene expression (qPCR target genes GABA and Acetyl cholinesterase). We tested 4 Ag materials: PVP coated (PVP-AgNM), non-coated (NC-AgNM), the JRC reference Ag NM300K and AgNO₃. Results showed that short-term exposure via water to assess impact on cocoons’ hatching predicted longer term effects such as survival and reproduction. Moreover, if we extended the exposure from 11 to 17 day this allowed discrimination between hatch delay and impairment. Exposure of juveniles and adults via water showed that juveniles were most sensitive with survival affected. Across materials the following toxic ranking was observed: AgNO₃ ≥ Ag NM300K ≫ NC-AgNM ≥ PVP-AgNM. E. crypticus avoided AgNO₃ in a dose-response manner, avoiding most during the first 24 h. Avoidance of Ag NM300K and NC-AgNM only occurred during the first 24 h and the PVP coated AgNM were not avoided at all. The up-regulation of the GABA triggering anesthetic effects, indicated the high ecological impact of Ag materials in soil: Ag affects the GABAergic system hence organisms were not able to efficiently avoid and became intoxicated, this caused impacts in terms of survival and reproduction.
Показать больше [+] Меньше [-]Self-cleaning isotype g-C3N4 heterojunction for efficient photocatalytic reduction of hexavalent uranium under visible light Полный текст
2020
Le, Zhanggao | Xiong, Chuanbao | Gong, Junyuan | Wu, Xi | Pan, Tao | Chen, Zhongsheng | Xie, Zongbo
Photocatalysis is a promising method to eliminate hexavalent uranium (U(Ⅵ)) and recycle it from wastewater. However, most of researched photocatalysts are metal-contained, inactive in visible light, and inconvenient to recycle, which unfortunately impedes the further utilization of photocatalytic technology in U(Ⅵ) pollution treatment. Herein, g-C₃N₄ isotype heterojunction with interpenetrated tri-s-triazine structure (ipCN) was prepared by inserting urea into the interlayer of tri-s-triazine planes of thiourea-derived g-C₃N₄ and in-site thermal treating. The synthesized nanocomposites were used to convert soluble U(Ⅵ) ions into U(Ⅳ) sediment under visible light. Experimental and characterization results reveal that ipCN possess larger BET surface area, more negative-charged surface, higher U(Ⅵ) adsorption capability, and more efficient mass diffusion and charges transfer properties. With these excellent characteristics, nearly 98% U(Ⅵ) could be removed within 20 min over ipCN₅:₁ and 92% photoreduction efficiency could also be kept after 7 cycle uses, which were equal to or even superior than most reported metal-based photocatalysts. It is also proven that the configuration of U(Ⅵ) and photogenerated ·O₂⁻ play a significant role in the photocatalytic U(Ⅵ) reduction process, with (UO₂)ₓ(OH)y²ˣ⁻ʸ are more prone to be adsorbed and the photoinduced process of ·O₂⁻ will steal electrons from photocatalysts. Furthermore, with the self-generated ·O₂⁻ and H₂O₂, a green and facile regeneration process of photocatalysts was proposed This work provides a promising scheme to extract U(Ⅵ) from the perspectives of photocatalysts exploitation, photocatalytic reduction, and photocatalysts regeneration, which is meaningful for the sustainable U(Ⅵ) resource recovery and U(Ⅵ) pollution purification.
Показать больше [+] Меньше [-]Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna Полный текст
2020
Villa, Sara | Maggioni, Daniela | Hamza, Hady | Di Nica, Valeria | Magni, Stefano | Morosetti, Bianca | Parenti, Camilla Carla | Finizio, Antonio | Binelli, Andrea | Della Torre, Camilla
The ongoing development of nanotechnology has raised concerns regarding the potential risk of nanoparticles (NPs) to the environment, particularly aquatic ecosystems. A relevant aspect that drives NP toxicity is represented by the abiotic and biotic processes occurring in natural matrices that modify NP properties, ultimately affecting their interactions with biological targets. Therefore, the objective of this study was to perform an ecotoxicological evaluation of CeO₂NPs with different surface modifications representative of NP bio-interactions with molecules naturally occurring in the water environment, to identify the role of biomolecule coatings on nanoceria toxicity to aquatic organisms. Ad hoc synthesis of CeO₂NPs with different coating agents, such as Alginate and Chitosan, was performed. The ecotoxicity of the coated CeO₂NPs was assessed on the marine bacteria Aliivibrio fischeri, through the Microtox® assay, and with the freshwater crustacean Daphnia magna. Daphnids at the age of 8 days were exposed for 48 h, and several toxicity endpoints were evaluated, from the molecular level to the entire organism. Specifically, we applied a suite of biomarkers of oxidative stress and neurotoxicity and assessed the effects on behaviour through the evaluation of swimming performance. The different coatings affected the hydrodynamic behaviour and colloidal stability of the CeO₂NPs in exposure media. In tap water, NPs coated with Chitosan derivative were more stable, while the coating with Alginate enhanced the aggregation and sedimentation rate. The coatings also significantly influenced the toxic effects of CeO₂NPs. Specifically, in D. magna the CeO₂NPs coated with Alginate triggered oxidative stress, while behavioural assays showed that CeO₂NPs coated with Chitosan induced hyperactivity. Our findings emphasize the role of environmental modification in determining the NP effects on aquatic organisms.
Показать больше [+] Меньше [-]Rice grains alleviate cadmium toxicity by expending glutamate and increasing manganese in the cadmium contaminated farmland Полный текст
2020
Yuan, Kai | Wang, Changrong | Zhang, Changbo | Huang, Yongchun | Wang, Peipei | Liu, Zhongqi
The accumulation of cadmium (Cd) in rice grains is closely associated with the content of mineral nutrients and amino acid metabolism, but the causal link among them is unclear. Profiles of amino acids (AAs) and quantities of essential nutrients in grains from early and late rice cultivars grown at four sites with different Cd levels were analyzed in the present study. Hazard quotients (HQs) for consumers by intake of rice from late cultivars were much higher than that from early cultivars at sites with soil Cd content of 0.25, 0.61 and 0.84 mg kg⁻¹. Cadmium accumulation in grains resulted in a sharp reduction of total essential AAs and non-essential AAs in both early and late rice cultivars. High-Cd-accumulating (HCA) cultivars had significantly higher level of glutamate (Glu) than low-Cd-accumulating (LCA) cultivars when rice Cd content was less than 0.20 mg kg⁻¹. However, Glu level in grains dramatically declined with the accumulation of Cd, which subsequently leaded to the reduction of other AAs. Cadmium content was well predicted by five amino acids (i.e., Glu, Alanine, Phenylalanine, Glycine and Threonine) or four essential elements (Ca, Fe, Mn and Zn) when rice Cd was less than 0.80 mg kg⁻¹. Amino acids played more important roles than nutrients in Cd accumulation. When Cd content was in the range of 0.40–1.16 mg kg⁻¹, the Mn content in rice increased significantly with the increase of Cd content, while the Glu content dropped down synchronously. Remarkably, the ratio between Mn and Glu displayed the highest direct path coefficient on Cd accumulation than any single cation or amino acid. These results indicate that high capacity in synthesizing Glu and concentrating Mn is the determinant factor for Cd accumulation in rice grains, and abundant Glu in aleurone layer may alleviate Cd toxicity by forming Glu-Cd complex.
Показать больше [+] Меньше [-]