Уточнить поиск
Результаты 961-970 из 6,535
Effect of chronic UVR exposure on zooplankton molting and growth
2020
Wolinski, Laura | Souza, María Sol | Modenutti, Beatriz | Balseiro, Esteban
Molting is a crucial physiological process in arthropods development, growth, and adult reproduction, where the chitinolytic enzyme chitobiase (CB) and the apoptosis process (caspase-3 activity) play crucial roles. Both molecular endpoints have been observed to be affected by different toxics that may be present in aquatic environments. However, the role of ultraviolet radiation (UVR) in the molting process remains with poor evidence and the possible effect of the previous exposure on F1 generation is unknown. Here, we conducted laboratory experiments with chronic UVR exposure to test the effect on the molting process of Daphnia commutata. Our results showed a clear negative effect of the UVR that affected the molting process with a reduction in individual growth. This trend was also observed in CB and caspase-3 activities. Our results also suggest that the UV dose received by the mother and eggs has an additive effect with the dose received by the offspring. These results imply that the cumulative impact of small UVR doses (2 h per day, daily dose: 2520 J m⁻² of 340 nm) on mothers and eggs (which cannot be discriminated in our experiments) can have an additive or synergistic effect along with the generations through a potential increase in lethal effect. Finally, the observed desynchronization in the molting process by UVR will affect the fitness of individuals and population dynamics.
Показать больше [+] Меньше [-]Effects of treatment agents during acid washing and pH neutralization on the fertility of heavy metal-impacted dredged marine sediment as plant-growing soil
2020
Kim, Kibeum | Yoon, Sangwon | Kwon, Hyun-ah | Choi, Yongju
The present study was aimed at investigating the effects of different acids and pH neutralizers applied to dredged marine sediment for the treatment of heavy metals, and the resulting influence on the sediment quality as a plant growth medium. The inspection of barley germination in the dredged marine sediment revealed that residual salts are critical plant stressors whose adverse effects exceed those exhibited by high-level heavy metals and petroleum hydrocarbons present in the sediment. Acid washing and pH neutralization reduced not only the heavy metal contents but also the sediment salinity (by factors of 6.1–9.5), resulting in 100% germination of barley. For acid-washed and calcium-oxide-neutralized sediment, the barley growth was comparable to that observed in untreated and water washed sediment despite factors of 5.2–8.0 greater sediment salinity in the former. This result represents the protective effect of residual calcium against sodium and chloride toxicity. Water washing of acid-washed and pH-neutralized sediments further enhanced barley growth owing to the reduction in osmotic pressure. This study showed the effect of different sediment-washing reagents on the product quality. It also indicated the significance of balancing the enhancement of product quality and economic cost of further treatment requirements.
Показать больше [+] Меньше [-]Nitrogen and sulfur co-doped biochar derived from peanut shell with enhanced adsorption capacity for diethyl phthalate
2020
Guo, Ruishui | Yan, Lili | Rao, Pinhua | Wang, Runkai | Guo, Xin
Doping of nitrogen and sulfur on biochar (NS-B) was investigated by a novel and improved method for diethyl phthalate (DEP) removal. The preparation parameters including pyrolysis temperature and size of peanut shell biochar as well as thiourea/biochar mass ratio were selected as independent variables at three levels by applying the Box-Behnken design. The ANOVA results indicated that thiourea/biochar mass ratio exhibited the most significant effect. The comprehensive effects of the three factors on DEP removal efficiency were further elaborated, combining with the characterization results of the obtained NS-B materials. The formation of the pyridinic N and oxidized S groups examined by XPS was responsible for enhancing the DEP removal efficiency. The adsorption kinetic model fitting illustrated that large micropores and numerous adsorption sites improved the adsorption capacity of NS-B. According to the adsorption isotherm model fitting, NS-B (temperature 375 °C, size 300 mesh and thiourea/biochar mass ratio 0.1) possessed much higher maximum adsorption capacity for DEP (14.34 mg g⁻¹) than biochar (6.57 mg g⁻¹). NS-B exhibited excellent reusability towards DEP removal after five times recycling. Moreover, NS-B also had the potential in peroxydisulfate activation. These findings provide new insights into the environmental implications of NS-B.
Показать больше [+] Меньше [-]Co-effect of minerals and Cd(II) promoted the formation of bacterial biofilm and consequently enhanced the sorption of Cd(II)
2020
Xu, Shaozu | Xing, Yonghui | Liu, Song | Luo, Xuesong | Chen, Wenli | Huang, Qiaoyun
Heavy metal pollution is very common in soils. Soils are complex systems including minerals, bacteria, and various other substances. In Cd(II) contaminated soil, the combined effects of clay minerals and heavy metals on bacterial biofilm and Cd(II) adsorption are unappreciated. Our study showed that the combination of clay minerals (goethite, kaolinite, and montmorillonite) and heavy metals promoted Serratia marcescens S14 biofilm development significantly more than clay minerals or Cd(II) alone. The amount of biofilm after binary treatment with clay minerals and Cd(II) was 2.3–7.3 times than that in control. Mineral-induced cell death and the expression of the fimA, bsmA, and eps were key players in biofilm formation. Binary treatment with montmorillonite and Cd(II) significantly enhanced biofilm development and consequently increased the adsorption of Cd(II). Cd(II) removal is the result of co-adsorption of bacteria and minerals. Bacterial biofilm played an important role in Cd(II) adsorption. FTIR spectroscopy showed the components of biofilm were not affected by minerals and revealed the functional groups –OH, –NH, –CH₂, –SH, –COO participated in Cd(II) immobilization. Our findings are of fundamental significance for understanding how minerals and Cd(II) affect biofilms and thereby enhance Cd(II) adsorption and predicting the mobility and fate of heavy metals in heavy metal-contaminated soil.
Показать больше [+] Меньше [-]Occurrence of organic plastic additives in surface waters of the Rhône River (France)
2020
Schmidt, Natascha | Castro-Jiménez, Javier | Fauvelle, Vincent | Ourgaud, Mélanie | Sempéré, Richard
We present here a comprehensive study (1-year regular sampling) on the occurrence of major families of organic plastic additives in the Rhône River surface waters. Potential sources and contaminant export are also discussed. A total of 22 dissolved phase samples were analyzed for 22 organic additives mainly used in the plastic industry, including organophosphate esters (OPEs), phthalates (PAEs) and bisphenols (BPs). Our results indicate that PAEs were the most abundant class, with concentrations ranging from 97 to 541 ng L⁻¹, followed by OPEs (85–265 ng L⁻¹) and BPs (4–21 ng L⁻¹). Among PAEs, diethylhexyl phthalate (DEHP) was the most abundant compound, whereas TCPP (Tris(1-chloro-2-propyl) phosphate) and TnBP (Tri(n-butyl)phosphate) were the predominant OPEs. Bisphenol S was the only BP detected. 5–54 metric tons year⁻¹ of dissolved organic plastic additives of emerging concern are estimated to be exported to the Gulf of Lion by the Rhône River, which is the main freshwater source of the Mediterranean Sea.
Показать больше [+] Меньше [-]Microphytobenthos diversity and community structure across different micro-estuaries and micro-outlets: Effects of environmental variables on community structure
2020
Dalu, Tatenda | Magoro, Mandla L. | Naidoo, Lyndle S. | Wasserman, Ryan J. | Human, Lucienne RD. | Adams, Janine B. | Perissinotto, R. | Deyzel, Shaun HP. | Wooldridge, Tris | Whitfield, Alan K.
This study forms the first basic assessment of microphytobenthos (MPB) dynamics in micro-estuaries and micro-outlets in southern Africa. It examines MPB community responses to environmental variables and further investigates MPB composition qualitatively across different micro-estuaries and micro-outlets over four seasons in a warm temperate region of the subcontinent. Combinations of multivariate analyses were used to explore similarities and differences in MPB communities between systems. Human-induced catchment changes between microsystems ranged from no alteration (rating 0; mostly micro-outlets) to extreme modification (rating 5; mostly micro-estuaries). Two hundred and sixty-seven MPB taxa were identified within all the microsystems, with 247 and 230 MPB taxa being observed in the micro-estuaries and micro-outlets, respectively. The MPB communities differed slightly in terms of microsystem types and seasons, but no significant differences were observed. Multivariate analyses (i.e. Boosted Regression Trees, Canonical Correspondence Analysis) showed that water column variables were significant and important in structuring MPB communities, with soluble reactive phosphorus, sediment pH, turbidity, ammonium and temperature being documented as key drivers. The MPB community composition clearly reflected the influence of catchment anthropogenic activities on species composition and structure. Moderately modified catchments resulted in MPB community structure variation among water bodies in relationship to land use and salinity gradients. The study found that; (i) by virtue of their size, microsystems and their catchments are likely to be particularly vulnerable to anthropogenic pressures when compared to systems of larger size; (ii) a typical impacted state may reflect reduced environmental heterogeneity which, compared to larger systems, may be achieved over much shorter time periods (following a particular event) or under much less intensive impacts; and (iii) the response in terms of MPB structure may predictably reflect a concomitant change from a complex community dynamic (structure and spatio-temporal attributes) to one that approaches a homogeneous structure (poor spatial zonation, strong taxonomic dominance, low species diversity).
Показать больше [+] Меньше [-]Oxidative stress response and proteomic analysis reveal the mechanisms of toxicity of imidazolium-based ionic liquids against Arabidopsis thaliana
2020
Jin, Mingkang | Wang, Huan | Liu, Huijun | Xia, Yilu | Ruan, Songlin | Huang, Yuqing | Qiu, Jieren | Du, Shaoting | Xu, Linglin
Ionic liquids (ILs) are extensively used in various fields, posing a potential threat in the ecosystem because of their high stability, excellent solubility, and biological toxicity. In this study, the toxicity mechanism of three ILs, 1-octyl-3-methylimidazolium chloride ([C₈MIM]Cl), 1-decyl-3-methylimidazolium chloride ([C₁₀MIM]Cl), and 1-dodecyl-3-methylimidazolium chloride ([C₁₂MIM]Cl) on Arabidopsis thaliana were revealed. Reactive oxygen species (ROS) level increased with higher concentration and longer carbon chain length of ILs, which led to the increase of malondialdehyde (MDA) content and antioxidase activity, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and peroxidase (POD) activities. SOD, CAT, and GPX activities decreased in high ILs concentration due to the excessive ROS. Differentially expressed protein was analyzed based on Gene ontology (GO) and KEGG pathways analysis. 70, 45, 84 up-regulated proteins, and 72, 104, 79 down-regulated proteins were identified in [C₈MIM]Cl, [C₁₀MIM]Cl, and [C₁₂MIM]Cl treatment, respectively (fold change ≥ 1.5 with ≥95% confidence). Cellular aldehyde metabolic process, mitochondrial and mitochondrial respiratory chains, glutathione transferase and oxidoreductase activity were enriched as up-regulated proteins as the defense mechanism of A. thaliana to resist external stresses. Chloroplast, photosynthetic membrane and thylakoid, structural constituent of ribosome, and transmembrane transport were enriched as the down-regulated protein. Compared with the control, 8 and 14 KEGG pathways were identified forup-regulated and down-regulated proteins, respectively, in three IL treatments. Metabolic pathways, carbon metabolism, biosynthesis of amino acids, porphyrin and chlorophyll metabolism were significantly down-regulated. The GO terms annotation demonstrated the oxidative stress response and effects on photosynthesis of A. thaliana in ILs treatment from biological process, cellular component, and molecular function categories.
Показать больше [+] Меньше [-]Antibiotic resistance genes, class 1 integrons, and IncP-1/IncQ-1 plasmids in irrigation return flows
2020
Dungan, Robert S. | Bjorneberg, David L.
Surface waters could be a dominant route by which antibiotic resistance genes (ARGs) are disseminated. In the present study we explored the prevalence and abundance of ARGs [blaCTX₋M₋₁, erm(B), sul1, tet(B), tet(M), and tet(X)], class 1 integron-integrase gene (intI1), and IncP-1 and IncQ-1 plasmids in eight irrigation return flows (IRFs) and a background site (Main Line Canal, MLC) in the Upper Snake Rock watershed in southern Idaho. Grab samples were collected on a monthly basis for a calendar year, which were processed to extract microbial DNA, followed by droplet digital PCR to quantify the gene copies on an absolute (per 100 mL) and relative (per 16S rRNA gene copies) basis. The antibiotic resistance and intI1 genes and IncP-1/IncQ-1 plasmids were recovered at all IRF sampling sites with detections ranging from 55 to 81 out of 81 water sampling events. The blaCTX₋M₋₁ gene was detected the least frequently (68%), while the other genes were detected more frequently (88–100%). All of the genes were also detected at MLC from April to Oct when water was present in the canal. The genes from lowest to greatest relative abundance in the IRFs were: blaCTX₋M₋₁ < erm(B) < tet(B) < IncQ-1 < tet(M) < sul1 < intI1 = IncP-1 < tet(X). When compared to the average annual relative gene abundances in MLC water samples, they were found to be at statistically greater levels (P ≤ 0.008) except that of the IncP-1 and IncQ-1 plasmids (P = 0.8 and 0.08, respectively). The fact that most IRFs contained higher levels than found in the canal water, indicates that IRFs can be a point source of ARGs that ultimately discharge into surface waters.
Показать больше [+] Меньше [-]Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents
2020
Noman, Muhammad | Shāhid, Muḥammad | Ahmed, Temoor | Niazi, Muhammad Bilal Khan | Ḥussain, Ṣābir | Song, Fengming | Manzoor, Irfan
Textile wastewater contains a huge amount of azo dyes and heavy metals and catastrophically deteriorates the agricultural field by affecting its phyisco-chemical/biological and nutritional properties when directly drained to agricultural lands without any treatment. Recently, biogenic copper nanoparticles (CuNPs) have gained considerable attention for photocatalytic degradation of wastewater pollutants owing to their unique physico-chemical and biological properties, low cost and environmental sustainability. The current study reports the synthesis of CuNPs by a native copper-resistant bacterial strain Escherichia sp. SINT7 and evaluation of the photocatalytic activity of the biogenic CuNPs for azo dye degradation and treatment of textile effluents. Scanning electron microscopy and transmission electron microscopy revealed the spherical shape of biogenic CuNPs with particle size ranging from 22.33 to 39 nm. Moreover, X-ray diffraction data revealed that the CuNPs have spherical crystalline shapes with an average particle size of 28.55 nm. FTIR spectra showed the presence of coating proteins involved in the stabilization of nanomaterial. Azo dye degradation assays indicated that CuNPs decolorized congo red (97.07%), malachite green (90.55%), direct blue-1 (88.42%) and reactive black-5 (83.61%) at a dye concentration of 25 mg L⁻¹ after 5 h of sunlight exposure. However, at 100 mg L⁻¹ dye concentration, the degradation percentage was found to be 83.90%, 31.08%, 62.32% and 76.84% for congo red, malachite green, direct blue-1 and reactive black-5, respectively. Treatment of textile effluents with CuNPs resulted in a significant reduction in pH, electrical conductivity, turbidity, total suspended solids, total dissolved solids, hardness, chlorides and sulfates as compared to the non-treated samples. Thus, the promising dye detoxification and textile effluent recycling efficiency of biogenic CuNPs may lead to the development of eco-friendly and cost-efficient process for large-scale wastewater treatment.
Показать больше [+] Меньше [-]Long-term variation in CO2 emissions with implications for the interannual trend in PM2.5 over the last decade in Beijing, China
2020
Liu, Zan | Liu, Zirui | Song, Tao | Gao, Wenkang | Wang, Yinghong | Wang, Lili | Hu, Bo | Xin, Jinyuan | Wang, Yuesi
Long-term CO₂ and PM₂.₅ measurements in urban areas have important impacts on understanding the roles of urbanization in climate change and air pollution. From 2009 to 2017, CO₂ fluxes were measured by the eddy covariance (EC) system at a height of 140 m on the Beijing Meteorological Tower. The CO₂ fluxes followed a typical two-peak diurnal pattern all year round. The PM₂.₅ concentrations followed a similar diurnal pattern as the CO₂ fluxes in summer but a different diurnal pattern in winter (low in the day and high at night). On a seasonal time scale, both the CO₂ fluxes and the PM₂.₅ concentrations showed a pronounced seasonal variation (high in winter and low in summer). The spatial variations in CO₂ fluxes were dominated by the prevailing land use types within the flux footprint, particularly dense residential areas and heavy traffic roads. On both diurnal and annual time scales, the urban underlying surface was a net source of CO₂. The 9-year average annual total CO₂ flux was 36.4 kg CO₂·m⁻² yr⁻¹. Depending on the yearly prevailing wind direction, the effect of the heterogeneity correction on the annual total CO₂ fluxes based on the gap-filled dataset could reach up to 3.5%. Over the 9-year period, both the CO₂ fluxes and the PM₂.₅ concentrations exhibited a declining interannual trend, and CO₂ fluxes could account for 64% of the interannual variability in PM₂.₅ concentrations. In summer, emissions were more likely to control the interannual variability in PM₂.₅ concentrations, whereas in winter, meteorological conditions had a greater impact on the interannual variability in PM₂.₅ concentrations.
Показать больше [+] Меньше [-]