Уточнить поиск
Результаты 981-990 из 6,535
Main drivers of mercury levels in Southern Ocean lantern fish Myctophidae
2020
Seco, José | Xavier, José C. | Bustamante, Paco | Coelho, João P. | Saunders, Ryan A. | Ferreira, Nicole | Fielding, Sophie | Pardal, Miguel A. | Stowasser, Gabriele | Viana, Thainara | Tarling, Geraint A. | Pereira, Eduarda | Brierley, Andrew S.
Myctophids are the most abundant fish group in the Southern Ocean pelagic ecosystem and are an important link in the Antarctic marine food web. Due to their major ecological role, evaluating the level of mercury (Hg) contamination in myctophids is important as a step towards understanding the trophic pathway of this contaminant. The concentrations of total Hg were determined in muscle, gill, heart and liver tissue of 9 myctophid species to quantify tissue partitioning variability between species. Organic Hg concentration and proportion in muscle was also determined. Hg concentrations were higher in the liver and heart than in muscle and gills, but the proportion of organic Hg was almost 100% in muscle, indicating that the main uptake route for Hg is through the diet. Most of the species analysed have similar vertical and horizontal distributions, and similar feeding modes and prey. Geographical and temporal variability of Hg concentrations was examined using samples from 3 different sampling cruise (2007/08, 2015/16 and 2016/17) and 2 locations (South Georgia and South Orkneys Islands). Our results appear to indicate a decreasing trend in Hg contamination over the last decade, particularly gill tissue, which is in agreement with a previous study on squid from the same region. There was no significant variability in Hg concentration between the different sampling locations. Hg levels were consistent with values reported previously for myctophids around the world, indicating low global-scale geographic variability. A positive relationship between fish size and Hg concentration was found for most species, with the exception of Electrona antarctica females, which may be explained through Hg elimination by egg laying. We estimate that myctophids collectively comprise a Southern Ocean mercury ‘reserve’ of ≈1.82 metric tonnes.
Показать больше [+] Меньше [-]Acute impact of Hg2+, Cu2+, and Ag+ on the formation of biopolymers and nitrogenous soluble microbiological products in activated sludge for wastewater treatment
2020
Liu, Tong | Wang, Zi | Wu, Linjie | Guo, Menghan | Yang, Chanyu | Cao, Xin | Qiu, Xiaopeng | Kong, Zan | Zhong, Min | Pan, Baozhu | Ke, Yanchun | Zheng, Xing
In the present work, acute impact of heavy metals on activated sludge was investigated, specifically the release of biopolymers and nitrogenous soluble microbiological products (N-SMP) that significantly impact tertiary effluent quality. Based on the previously reported studies, Hg²⁺ and Ag⁺ were selected as representative “non-essential” heavy metals, while Cu²⁺ was selected as the “essential” heavy metal. Stress tests show that under the present experimental conditions, adding a higher concentration of heavy metals to the activated sludge increases the concentration of biopolymers and SMP in the supernatant; N-SMP increased more significantly than carbonaceous products, implying a greater risk of formation of toxic nitrogenous disinfection by-products or membrane fouling in relevant tertiary treatment processes. The severity of the release of SMP into the supernatant depended on the heavy metal, with an order of Hg²⁺ > Ag⁺ > Cu²⁺ (“non-essential” > “essential”) under identical molar concentrations. The mass balance of typical organics (e.g., biopolymers) in SMP and extracellular polymeric substances (EPS) in activated sludge was analyzed, and a negative correlation between the organics in the SMP and tightly bound EPS was observed, implying that a significant fraction of the SMP could be quickly released from the tightly bound EPS under heavy metal shock conditions and could be related to cell response or damage.
Показать больше [+] Меньше [-]Desert dust as a significant carrier of atmospheric mercury
2020
Huang, Jie | Kang, Shichang | Yin, Runsheng | Ram, Kirpa | Liu, Xinchun | Lu, Hui | Guo, Junming | Chen, Siyu | Tripathee, Lekhendra
The atmospheric circulation plays a critical role in the global transport and deposition of atmospheric pollutants such as mercury (Hg). Desert dust emissions contribute to nearly 60–95% of the global dust budget and thus, desert dust may facilitate atmospheric Hg transport and deposition to the downwind regions worldwide. The role of desert dust in biogeochemical cycling of Hg, however, has not been well recognized by the Hg research community. In this study, we measured the concentration of particulate bound Hg (HgP) in total suspended particulate (TSP) collected from China’s largest desert, Taklimakan Desert, between 2013 and 2017. The results show that HgP concentrations over the Taklimakan Desert atmosphere are remarkably higher than those observed from background sites in China and are even comparable to those measured in most of the Chinese metropolitan cities. Moreover, HgP concentrations in the Taklimakan Desert exhibit a distinct seasonal pattern peaking during dust storm outbreak periods in spring and summer (March to August). A preliminary estimation demonstrates that export of total Hg associated with atmospheric dust from the Taklimakan Desert could be 59.7 ± 60.3 (1SD) Mg yr⁻¹. The unexpectedly high HgP concentrations during duststorms, together with consistent seasonal pattern of Hg revealed from the snow/ice, clearly demonstrate that Asian desert dust could act as a significant carrier of atmospheric Hg to the cryosphere of Western China and even can have further global reach.
Показать больше [+] Меньше [-]High levels of boron promote anchorage-independent growth of nontumorigenic cells
2020
Xu, Huadong | Hashimoto, Kazunori | Maeda, Masao | Azimi, Mohammad Daud | Fayaz, Said Hafizullah | Chen, Wei | Hamajima, Nobuyuki | Kato, Masashi
WHO has presented a health-based guideline value for boron in drinking water. That fact indicates that a high level of boron is toxic for humans. However, there is no direct evidence of boron-mediated malignant transformation. In this study, human lung epithelial nontumorigenic BEAS-2B cells and tumorigenic A549 cells were used to investigate the tumorigenic toxicity of boron in vitro. Anchorage-independent growth, a hallmark of malignant transformation, was increased by boron at concentrations of 50, 250 and 500 μM in BEAS-2B cells, though the same concentrations of boron had no influence on anchorage-independent growth of A549 cells. Moreover, boron at concentrations of 250 and 500 μM activated the c-SRC/PI3K/AKT pathway of BEAS-2B cells. The results of our in vitro study suggest that exposure to high levels of boron promotes transforming activity of nontumorigenic cells.
Показать больше [+] Меньше [-]Novel insights into effects of silicon-rich biochar (Sichar) amendment on cadmium uptake, translocation and accumulation in rice plants
2020
Wang, Yaofeng | Zhang, Kun | Lü, Lun | Xiao Xin, | Chen, Baoliang
The effects and mechanisms of biochars with different silicon (Si) contents on Cadmium (Cd) uptake, translocation and accumulation in rice plants are not fully understood. Herein, we report a pot study to disentangle the interaction mechanisms of Si-rich biochars (Sichar RH300, RH700) and Si-deficient biochars (WB300, WB700) with high-Si soil (HSS) and low-Si soil (LSS) on Cadmium (Cd) and Si accumulation in rice (including grains, straw, and roots). Sichar was found to be better than Si-deficient biochars in reducing Cd uptake and accumulation in rice, and RH300 amendment was better than the RH700 treatment. The surface complexation of Cd with carboxyl groups and Si from biochar led Cd immobilization in soil, as portrayed by Fourier transformed infrared spectroscopy and X-ray photoelectron spectroscopy. The high Si content of biochars indicates a relatively lower bioaccumulation factor and translocation factor of Cd. The Sichar (e.g., RH300) treatment significantly increases the silicon concentration in rice (including grains, straw, and roots), but the Si concentrations of rice grains and roots decrease with WB700-amended LSS. Negative correlations between the concentrations of rice Si and Cd were observed, which could be related to lower expression as observed by Si transport genes (Lsi1 and Lsi3) in rice by Sichar amendment. These findings suggest that the Si released from Sichars can reduce the gene expression of Si transport channel of rice roots and inhibit the transport channel of Si, thus thereby inhibiting the Cd uptake, probably due to the utilization of same channel for Cd and Si. Integrative mechanisms of Sichar (RH300 and RH700) reduced Cd plant accumulation can be proposed by soil immobilization, inhibition of root transport, and prevention of plant translocation.
Показать больше [+] Меньше [-]Genome recovery and metatranscriptomic confirmation of functional acetate-oxidizing bacteria from enriched anaerobic biogas digesters
2020
Wei, Yongjun | Wu, Youqian | Zhang, Lei | Zhou, Zhihua | Zhou, Haokui | Yan, Xing
In many cases, it is difficult to isolate the key microbial organisms from their communities present in natural environments. Metagenomic methods can recover near-complete genomes of the dominant microbial organisms in communities, and metatrancriptomic data could further reveal important genes and pathways related to their functions. In this study, three draft genomes of Clostridium ultunense-like bacteria were recovered based on metagenomic analyses, which is an essential syntrophic acetate-oxidizing bacteria (SAOB) member for maintaining high methane production in high-ammonium biogas digesters but difficult to isolate from its syntrophic partners. Firstly, syntrophic acetate-oxidizing bacteria in a microbial community series were enriched from a biogas digester by adding sodium acetate in the medium. Global analyses of C. ultunense suggested that it would combine the pyruvate-serine-glycine pathway and part of the Wood–Ljungdahl pathway for syntrophic acetate oxidization. Moreover, metatranscriptomic analyses showed that all of the genes of the proposed syntrophic acetate-oxidizing pathway present in the genome were actively transcribed in the microbiota. The functional bacterial enrichment and refined assembly method identify rare microbial genome in complex natural microbiota, which help to recover the syntrophic acetate-oxidizing pathway in C. ultunense strains in this study.
Показать больше [+] Меньше [-]Legacy and emerging semi-volatile organic compounds in sentinel fish from an arctic formerly used defense site in Alaska
2020
Zheng, Guomao | Miller, Pamela | von Hippel, Frank A. | Buck, C Loren | Carpenter, David O. | Salamova, Amina
The Arctic is subject to long-range atmospheric deposition of globally-distilled semi-volatile organic compounds (SVOCs) that bioaccumulate and biomagnify in lipid-rich food webs. In addition, locally contaminated sites may also contribute SVOCs to the arctic environment. Specifically, Alaska has hundreds of formerly used defense (FUD) sites, many of which are co-located with Alaska Native villages in remote parts of the state. The purpose of this study was to investigate the extent of SVOC contamination on Alaska’s St. Lawrence Island through the analysis of sentinel fish, the ninespine stickleback (Pungitius pungitius), collected from Troutman Lake located within the watershed of an FUD site and adjacent to the Yupik community of Gambell. We measured the concentrations of legacy and emerging SVOCs in 303 fish samples (81 composites), including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs) and their diester metabolites, and per- and poly-fluoroalkyl substances (PFAS). PBDEs and PCBs were the most abundant SVOC groups found in stickleback with ΣPBDE and ΣPCB median concentrations of 25.8 and 10.9 ng/g ww, respectively, followed by PFAS (median ΣPFAS 7.22 ng/g ww). ΣOPE and ΣOPE metabolite concentrations were lower with median concentrations of 4.97 and 1.18 ng/g ww, respectively. Chemical patterns and distributions based on correlations and comparison with SVOC concentrations in stickleback from other parts of the island suggest strong local sources of PCBs, PBDEs, and PFAS on St. Lawrence Island.
Показать больше [+] Меньше [-]Long-term impact of fertigation with treated sewage effluent on the physical soil quality
2020
Coelho, Anderson Prates | Silva, Matheus Flavio da | Faria, Rogério Teixeira de | Fernandes, Carolina | Dantas, Geffson de Figueiredo | Santos, Gilmar Oliveira
In agriculture, wastewater is used as an alternative source to meet the water and nutritional requirements of plants. However, long-term application of wastewater may degrade soil attributes. This study aimed to evaluate the soil physical quality of Oxisol fertigated with treated sewage effluent (TSE). The experiment was conducted in an area under TSE application for 4 years in Oxisol (625 g kg⁻¹ clay) cultivated with Urochloa brizantha. The treatments consisted of six levels of TSE in irrigation depth, 0%, 11%, 31%, 60%, 87%, and 100%, with four repetitions. Undisturbed and disturbed soils samples were collected in three layers (0.00–0.10 m; 0.10–0.20 m, and 0.20–0.30 m). Aggregation, porosity and water infiltration attributes were evaluated. This work concludes a long-term study on the effects of TSE application on soil properties and on the Urochloa brizantha crop. In other works, carried out in the experimental area of the present study, it was found that TSE fertigation increases the yield and quality of Urochloa brizantha, increases soil fertility and does not lead to soil heavy metal contamination. We note the TSE fertigation does not change the aggregation, porosity, water infiltration rate and organic carbon content in the soil. Irrigation with TSE is recommended in areas with clayey soil and those cultivated with perennial grasses as it does not cause any damage to the physical quality of the soil. Thus, the TSE fertigation can be used on many crops as a source of water and nutrients, reducing the environmental contamination potential.
Показать больше [+] Меньше [-]Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress
2020
Fatemi, Hamideh | Esmaiel Pour, Behrooz | Rizwan, Muhammad
Rapid global industrialization has increased the chances of toxic trace element accumulation in plants and other living things via the food chain. Thus, there is an urgent need to find suitable techniques with the aim to alleviate the stress of toxic trace elements in crops to feed the ever-increasing population with quality food. This research was based on the hypothesis that the growth traits of coriander (Coriandrum sativum L.) plants can be improved by the combined application of lead (Pb) resistant microbes and silicon nanoparticles (Si-NPs) under Pb stress. Two Pb-resistant strains of the microbes were isolated under different Pb concentrations, and then these strains were characterized for different traits. The strains were inoculated in the Pb-spiked (500 mg/kg) soil, and Si-NPs (1.5 mM) were foliar sprayed at different time (three times, two-week interval). The growth and stress tolerance of the plant were assessed by measuring the morphological traits, chlorophyll contents, proline, electrolyte leakage, and enzymatic and non-enzymatic antioxidant activities of the leaves. Results demonstrated that Pb stress had significant negative impacts on all the traits of the coriander. Si-NPs application or bacterial inoculation reversed the Pb-induced toxicities in plants, which was indicated by the improved growth, photosynthesis, and antioxidant enzyme activities of the plants under Pb stress. The effect of the combined use of Si-NPs and microbes was more pronounced than the treatments alone. It can be concluded that Pb-resistant microorganism and Si-NPs could effectively be used to alleviate Pb stress in coriander.
Показать больше [+] Меньше [-]Insights into the transcriptional responses of a microbial community to silver nanoparticles in a freshwater microcosm
2020
Lu, Tao | Qu, Qian | Lavoie, Michel | Pan, Xiangjie | Peijnenburg, W.J.G.M. | Zhou, Zhigao | Pan, Xiangliang | Cai, Zhiqiang | Qian, Haifeng
Silver nanoparticles (AgNPs) are widely used because of their excellent antibacterial properties. They are, however, easily discharged into the water environment, causing potential adverse environmental effects. Meta-transcriptomic analyses are helpful to study the transcriptional response of prokaryotic and eukaryotic aquatic microorganisms to AgNPs. In the present study, microcosms were used to investigate the toxicity of AgNPs to a natural aquatic microbial community. It was found that a 7-day exposure to 10 μg L⁻¹ silver nanoparticles (AgNPs) dramatically affected the structure of the microbial community. Aquatic micro eukaryota (including eukaryotic algae, fungi, and zooplankton) and bacteria (i.e., heterotrophic bacteria and cyanobacteria) responded differently to the AgNPs stress. Meta-transcriptomic analyses demonstrated that eukaryota could use multiple cellular strategies to cope with AgNPs stress, such as enhancing nitrogen and sulfur metabolism, over-expressing genes related to translation, amino acids biosynthesis, and promoting bacterial-eukaryotic algae interactions. By contrast, bacteria were negatively affected by AgNPs with less signs of detoxification than in case of eukaryota; various pathways related to energy metabolism, DNA replication and genetic repair were seriously inhibited by AgNPs. As a result, eukaryotic algae (mainly Chlorophyta) dominated over cyanobacteria in the AgNPs treated microcosms over the 7-d exposure. The present study helps to understand the effects of AgNPs on aquatic microorganisms and provides insights into the contrasting AgNPs toxicity in eukaryota and bacteria.
Показать больше [+] Меньше [-]