Уточнить поиск
Результаты 981-990 из 7,292
Inorganic versus organic fertilizers: How do they lead to methylmercury accumulation in rice grains Полный текст
2022
Sun, Tao | Xie, Qing | Li, Chuxian | Huang, Jinyong | Yue, Caipeng | Zhao, Xuejie | Wang, Dingyong
Both inorganic and organic fertilizers are widely used to increase rice yield. However, these fertilizers are also found to aggravate mercury methylation and methylmercury (MeHg) accumulation in paddy fields. The aim of this study was to reveal the mechanisms of inorganic and organic fertilizers on MeHg accumulation in rice grains, which are not yet well understood. Potting cultures were conducted in which different fertilizers were applied to a paddy soil. The results showed that both inorganic and organic fertilizers increased MeHg concentrations rather than biological accumulation factors (BAFs) of MeHg in mature rice grains. Inorganic fertilizers, especially nitrogen fertilizer, enhanced the bioavailability of mercury and the relative amount Hg-methylating microbes and therefore intensified mercury methylation in paddy soil and MeHg accumulation in rice grains. Unlike inorganic fertilizers, organic matter (OM) in organic fertilizers was the main reason for the increase of MeHg concentrations in rice grains, and it also could immobilize Hg in soil when it was deeply degraded. The enhancement of MeHg concentrations in rice grains induced by inorganic fertilizers (5.18–41.69%) was significantly (p < 0.05) lower than that induced by organic fertilizers (80.49–106.86%). Inorganic fertilizers led to a larger increase (50.39–99.28%) in thousand-kernel weight than MeHg concentrations (5.18–41.69%), resulting in a dilution of MeHg concentrations in mature rice grains. Given the improvement of soil properties by organic fertilizer, increasing the proportion of inorganic fertilizer application may be a better option to alleviate MeHg accumulation in rice grains and guarantee the rice yield in the agricultural production.
Показать больше [+] Меньше [-]Microplastic contamination in seafood from Dongshan Bay in southeastern China and its health risk implication for human consumption Полный текст
2022
Pan, Zhong | Liu, Qianlong | Xu, Jing | Li, Weiwen | Lin, Hui
Microplastic (MP) pollution has been a considerable concern due to its ubiquity in the environment and its potential to harm human health. Unfortunately, the exact levels of MP in various species of seafood species have not been established. It is also unclear whether or not consuming seafood contaminated with MPs directly jeopardizes human health. Here, eight popular species of seafood in Dongshan Bay, China were investigated to determine the presence of MP pollution and its implications on human health. The abundance, color, size, shape, type, surface morphology, danger of the MPs extracted from the seafood were analyzed. Results showed that the average MP abundance in the shellfish and fish was 1.88 ± 1.44 and 1.98 ± 1.98 items individual⁻¹, respectively. The heavy presence of fibers may be attributed to the shellfish and fish's feeding behaviors as well as their habitat and environment. The sizes of MPs found were below 1.0 mm. The main types of MP found in the shellfish were PES and PET, whereas the main types found in the fish were PS and PES. Risk assessment suggested that MPs in the shellfish (risk Level V) posed a greater and more direct threat to human health if the shellfish is eaten whole. The MPs in the gastrointestinal tracts (GITs) of fish (risk Level IV) have a relatively limited effect on human health since GITs are seldom consumed by humans unless the fish is heavily processed (canned or dried). MPs-induced health risk is predicted using a technique called molecular docking. The results of this study not only establish levels of MP pollution in popular seafood species but also help understand the implications of consuming MP-contaminated seafood on human health.
Показать больше [+] Меньше [-]Human health impact due to arsenic contaminated rice and vegetables consumption in naturally arsenic endemic regions Полный текст
2022
Rokonuzzaman, MD. | Li, W.C. | Wu, C. | Ye, Z.H.
Rice and vegetables cultivated in naturally arsenic (As) endemic areas are the substantial source of As body loading for persons using safe drinking water. However, tracing As intake, particularly from rice and vegetables by biomarker analysis, has been poorly addressed. This field investigation was conducted to trace the As transfer pathway and measure health risk associated with consuming As enriched rice and vegetables. Purposively selected 100 farmers from five sub-districts of Chandpur, Bangladesh fulfilling specific requirements constituted the subjects of this study. A total of 100 Irrigation water, soils, rice, and vegetable samples were collected from those farmers’ who donated scalp hair. Socio-demographic and food consumption data were collected face to face through questionnaire administration. The mean As level in irrigation water, soils, rice, vegetables, and scalp hairs exceeded the acceptable limit, while As content was significant at 0.1%, 5%, 0.1%, 1%, and 0.1% probability levels, respectively, in all five locations. Arsenic in scalp hair is significantly (p ≤ 0.01) correlated with that in rice and vegetables. The bioconcentration factor (BCF) for rice and vegetables is less than one and significant at a 1% probability level. The average daily intake (ADI) is higher than the RfD limit for As. Both grains and vegetables have an HQ (hazard quotient) > 1. Maximum incremental lifetime cancer risk (ILCR) showed 2.8 per 100 people and 1.6 per 1000 people are at considerable and threshold risk, respectively. However, proteinaceous and nutritious food consumption might have kept the participants asymptomatic. The PCA analysis showed that the first principle component (PC1) explains 91.1% of the total variance dominated by As in irrigation water, grain, and vegetables. The dendrogram shows greater variations in similarity in rice and vegetables As, while the latter has been found to contribute more to human body loading compared to grain As.
Показать больше [+] Меньше [-]Polystyrene microplastic particles: In vivo and in vitro ocular surface toxicity assessment Полный текст
2022
Zhou, Xiaoping | Wang, Guoliang | An, Xiaoya | Wu, Jun | Fan, Kai | Xu, Lina | Li, Cheng | Xue, Yuhua
Microplastics (MPs) have become a global concern as a key environmental pollutant. MPs are widely found in oceans, rivers, bottled water, plastic-packaged foods, and toiletries. The ocular surface is the exposed mucosal tissue, which comes in contact with MP particles contained in toiletries, tap water, cosmetics, and air. However, the effects of MPs on ocular surface health are still unclear. In this study, the toxic effects of polystyrene MPs (PS-MPs) on the ocular surface in vivo and in vitro were explored. The results demonstrated that 50 nm or 2 μm PS-MPs, following exposure for 48 h appeared in the cytoplasm of two kinds of eye cells in vitro and caused a concentration dependent reduction in cell viability, further causing oxidative stress and cell apoptosis. In addition, after treatment for 2 or 4 weeks, 50 nm and 2 μm PS-MPs were deposited in the conjunctival sac of mice. After 2 and 4 weeks of PS-MP treatment, the number of goblet cells in the lower eyelid conjunctival sac decreased to 65% and 40% of that in the control group, respectively. Moreover, dry eye like ocular surface damage and inflammation of conjunctiva and lacrimal gland in mice were observed. In conclusion, this study revealed that PS-MPs could cause ocular surface dysfunctions in mice, thus providing a new perspective for the toxic effects of MPs on ocular surface.
Показать больше [+] Меньше [-]Sediment nitrogen mineralization and immobilization affected by non-native Sonneratia apetala plantation in an intertidal wetland of South China Полный текст
2022
Yang, Xiaolong | Hu, Chengye | Wang, Bin | Lin, Hao | Xu, Yongping | Guo, Hao | Liu, Guize | Ye, Jinqing | Gao, Dengzhou
The mineralization and immobilization of nitrogen (N) are critical biogeochemical transformations in estuarine and coastal sediments. However, the biotic and abiotic mechanisms that regulate the two processes in different aged mangrove sediments remain poorly understood. Here, we used ¹⁵N isotope dilution method to investigate the changes in sediment N mineralization (GNM) and NH₄⁺ immobilization (GAI) of different aged mangrove habitats (including 0, 10, and 20 years Sonneratia apetala, as well as >40 years mature native Kandelia obovata) in Qi'ao Island, Guangdong Province, China. Measured GNM and GAI rates ranged from 2.69 to 17.53 μg N g⁻¹ d⁻¹ and 2.29–21.38 μg N g⁻¹ d⁻¹, respectively, which varied both spatially and seasonally. The ratio of GNM to total N (PAM%, 0.24–0.86%) also varied spatially and seasonally, but the ratio of GAI to GNM (RAI, 0.79–1.54) only varied spatially. Mangrove restoration significantly increased the N mineralization and immobilization rates, but remained lower than those of mature native Kandelia obovata habitat. The sediment bacterial abundance, labile organic matter and temperature are the dominant factors in controlling N mineralization and immobilization. Our findings suggested that exotic mangrove Sonneratia aperale plantation can enhance sediment N mineralization and immobilization rates and improve N stability through accumulated biomass rapidly. Overall, these results provide new insights into sediment N transformation processes and associated influencing mechanisms in such intertidal wetlands profoundly influenced by human activities.
Показать больше [+] Меньше [-]Concentrations, homolog profiles, and risk assessment of short- and medium-chain chlorinated paraffins in soil around factories in a non-ferrous metal recycling park Полный текст
2022
Weng, Jiyuan | Zhang, Peixuan | Gao, Lirong | Zhu, Shuai | Liu, Yang | Qiao, Lin | Zhao, Bin | Liu, Yin | Xu, Ming | Zheng, Minghui
Chlorinated paraffins (CPs) are used as additives in metal processing in the metal smelting industry. Data on CPs in the environment near metal smelting plants are limited. The objectives of this study were to investigate the concentrations and congener profiles of CPs in soil around factories in a non-ferrous metal recycling park located in Hebei, China, and to investigate human exposure to CPs in the soil. The concentrations of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) were determined by two-dimensional gas chromatography with electron capture negative ionization mass spectrometry. The SCCP and MCCP concentrations in the soil samples were 121–5159 ng/g and 47–6079 ng/g, respectively. Generally, the CP concentrations in soils around the factories were relatively high compared with those near other contaminated sites and in rural and urban areas. There were significant correlations between the MCCP concentrations, some SCCP carbon homologs, and the total organic carbon content (p < 0.05). The major SCCP and MCCP congener groups were C₁₀Cl₆–₇ and C₁₅–₁₆Cl₅, respectively. Hierarchical cluster analysis and principal component analysis indicated that SCCPs and MCCPs in the soil might originate from extreme pressure additives containing CP-42 and CP-52 and CP-containing waste material from the factories. The concentrations in two samples collected near a metal recycling factory posed a moderate risk according to a risk assessment conducted using risk quotients. Further risk assessment showed that the CPs concentrations in soil did not pose significant health risks to either children or adults.
Показать больше [+] Меньше [-]Calcium-enriched biochar modulates cadmium uptake depending on external cadmium dose Полный текст
2022
Kováčik, Jozef | Dresler, Sławomir | Sowa, Ireneusz | Babula, Petr | Antunes, Elsa
The impact of calcium-enriched biochar (BC, containing Ca, Al, Fe and P as dominant elements in the range of 6.9–1.3% with alkaline pH) obtained from sewage sludge (0.1 or 0.5% in the final soil) on cadmium-induced toxicity (final dose of 1.5 mg Cd/kg in control and 4.5 or 16.5 mg Cd/kg soil in low and high Cd treatment) was tested in medicinal plant Matricaria chamomilla. Low Cd dose had typically less negative impact than high Cd dose at the level of minerals and metabolites and the effect of BC doses often differed. Contrary to expectations, 0.5% BC with a high Cd dose increased Cd accumulation in plants about 2-fold. This was reflected in higher signals of reactive oxygen species, but especially the high dose of BC increased the amount of antioxidants (ascorbic acid and non-protein thiols), minerals and amino acids in shoots and/or roots and usually mitigated the negative effect of Cd. Surprisingly, the relationship between BC and soluble phenols was negative at high BC + high Cd dose, whereas the effect of Cd and BC on organic acids (mainly tartaric acid) differed in shoots and roots. Interestingly, BC alone applied to the control soil (1.5 mg total Cd/kg) reduced the amount of Cd in the plants by about 30%. PCA analyses confirmed that metabolic changes clearly distinguished the high Cd + high BC treatment from the corresponding Cd/BC treatments in both shoots and roots. Thus, it is clear that the effect of biochar depends not only on its dose but also on the amount of Cd in the soil, suggesting the use of Ca-rich biochar both for phytoremediation and safer food production.
Показать больше [+] Меньше [-]Enhanced oxidation and stabilization of arsenic in a soil-rice system by phytosynthesized iron oxide nanomaterials: Mechanistic differences under flooding and draining conditions Полный текст
2022
Lin, Jiajiang | Wu, Weiqin | Khan, Nasreen Islam | Owens, Gary | Chen, Zuliang
Despite arsenic (As) bioavailability being highly correlated with water status and the presence of iron (Fe) minerals, limited information is currently available on how externally applied Fe nanomaterials in soil-rice systems affect As oxidation and stabilization during flooding and draining events. Herein, the stabilization of As in a paddy soil by a phytosynthesized iron oxide nanomaterials (PION) and the related mechanism was investigated using a combination of chemical extraction and functional microbe analysis in soil at both flooding (60 d) and draining (120 d) stages. The application of PION decreased both specifically bound and non-specifically bound As. The As content in rice root, stem, husk and grain was reduced by 78.5, 17.3, 8.4 and 34.4%, respectively, whereas As(III) and As(V) in root declined by 96.9 and 33.3% for the 1% PION treatment after 120 d. Furthermore, the 1% PION treatment decreased the ratio of As(III)/As(V) in the rhizosphere soil, root and stem. Although PION had no significant effect on the overall Shannon index, the distribution of some specific functional microbes changed dramatically. While no As(III) oxidation bacteria were found at 60 d in any treatments, PION treatment increased As(III) oxidation bacteria by 3–9 fold after 120 d cultivation. Structural equation model analysis revealed that the ratio of Fe(III)/Fe(II) affected As stabilization directly at the flooding stage, whereas nitrate reduction and As(III) oxidation microbial groups played a significant role in the stabilization of As at the draining stage. These results highlight that PION exhibits a robust ability to reduce As availability to rice, with chemical oxidation, reduction inhibition and adsorption dominating at the flooding stage, while microbial oxidation, adsorption and coprecipitation dominant during draining.
Показать больше [+] Меньше [-]A selective hydrometallurgical method for scandium recovery from a real red mud leachate: A comparative study Полный текст
2022
Salman, Ali Dawood | Juzsakova, Tatjána | Jalhoom, Moayyed G. | Abdullah, Thamer Adnan | Le, Phuoc-Cuong | Viktor, Sebestyen | Domokos, Endre | Nguyen, X Cuong | La, D Duong | Nadda, Ashok K. | Nguyen, D Duc
The aim of this study was to recover Sc as the main product and Fe as a by-product from Hungarian bauxite residue/red mud (RM) waste material by solvent extraction (SX). Moreover, a new technique was developed for the selective separation of Sc and Fe from real RM leachates. The presence of high Fe content (∼38%) in RM makes it difficult to recover Sc because of the similarity of their physicochemical properties. Pyrometallurgical and hydrometallurgical methods were applied to remove the Fe prior to SX. Two protocols based on organophosphorus compounds (OPCs) were proposed, and the main extractants were evaluated: bis(2-ethylhexyl) phosphoric acid (D2EHPA/P204) and tributyl phosphate (TBP). The results showed that SX using diethyl ether and tri-n-octylamine (N₂₃₅) was efficient in extracting Fe(III) from the HCl leachate as HFeC1₄. Over 97% of Sc was extracted by D2EHPA extractant under the following conditions; 0.05 mol/L of D2EHPA concentration, A/O phase ratio of 3:1, pH 0–1, 10 min of shaking time, and a temperature of 25 °C. Sc(OH)₃ as a precipitate was efficiently obtained by stripping from the D2EHPA organic phase by 2.5 mol/L of NaOH with a stripping efficiency of 95%. In the TBP system, 99% of Sc was extracted under the following conditions: 12.5% vol of TBP, an A/O phase ratio of 3:1, 10 min of shaking time, and a temperature of 25 °C. The Sc contained in the TBP organic phase could be efficiently stripped by 1 mol/L of HCl with a stripping efficiency of 92.85%.
Показать больше [+] Меньше [-]Geochemical records of Lake Erhai (South-Western China) reveal the anthropogenically-induced intensification of hypolimnetic anoxia in monomictic lakes Полный текст
2022
Zhang, Yongdong | Fu, Huan | Liao, Hanliang | Chen, Huihui | Liu, Zhengwen
In monomictic lakes, hypolimnetic anoxia is becoming severe in extent and duration over the past few decades. Understanding historical trends in hypolimnetic dissolved oxygen (DO) levels and the factors controlling them is crucial for effective protection and management of monomictic lakes everywhere, but the issue remains little studied in China. Here, our study elucidated the variation of hypolimnion DO and organic matter (OM) input in Lake Erhai (a typical monomictic lake in South-Western China) during the past 200 years, by using the geochemical profiles of elements (C, N, P, S, Mo, Ca, and Al) and aliphatic hydrocarbons in a dated sediment core. The values of element proxies (S concentrations, S/Al ratios, Mo enrichment factor, and total organic carbon/total P ratios) and pristane/phytane (Pr/Ph) ratios reflect relatively limited development of anoxia in the lake hypolimnion before 1990. Meanwhile, the n-alkane proxies (short-chain, middle-chain, and long-chain n-alkane abundances, n-C₁₇/n-C₁₆ alkane ratios, and Paq) indicate relatively scant inputs of OM from phytoplankton and relatively high inputs of OM from terrestrial plants or from submerged macrophytes. Taken together the results show that OM supplied in this period did not deteriorate hypolimnion DO in Lake Erhai. The element proxies and Pr/Ph ratios point to that the lake had experienced a pronounced intensification of hypolimnetic anoxia after 1990, and the n-alkane proxies indicate that the lake was susceptible to severe eutrophication and phytoplankton blooms in this period. The synchronous sharp variation implies the decay of massive phytoplankton OM had severely consumed oxygen in the lake hypolimnion. The large surface area/depth ratio in Lake Erhai is conducive for an overturn of the water column during wind disturbance, which allowed the water column stratification and relating effects (e.g., hypolimnetic anoxia) less vulnerable to some aspects of climate change.
Показать больше [+] Меньше [-]