Уточнить поиск
Результаты 131-140 из 5,572
Water quality for the food industry
1998
Dawson, David
[Properties of water in food products]
1990
Water purification [for the food industry].
1977
Harding H.G.
Sanitation and water supply [Food processing].
1976
Farrall A.W.
Attracting birds with food and water Полный текст
1923
Water for food systems and nutrition Полный текст
2023
Ringler, Claudia | Agbonlahor, Mure | Baye, Kaleab | Barron, Jennie | Hafeez, Mohsin | Lundqvist, Jan | Meenakshi, J.V. | Mehta, Lyla | Mekonnen, Dawit | Rojas Ortuste, Franz | Tankibayeva, Aliya | Uhlenbrook, Stefan
Water for food systems and nutrition Полный текст
2023
Ringler, Claudia; Agbonlahor, Mure Uhunamure; Baye, Kaleab; Barron, Jennie; Hafeez, Mohsin; Lundqvist, Jan; Meenakshi, J. V.; Mehta, Lyla; Mekonnen, Dawit Kelemework; Rojas-Ortuste, Franz; Tankibayeva, Aliya; Uhlenbrook, Stefan | http://orcid.org/0000-0002-8266-0488 Ringler, Claudia; http://orcid.org/0000-0003-3642-3497 Mekonnen, Dawit | NEXUS Gains
Access to sufficient and clean freshwater is essential for all life. Water is also essential for the functioning of food systems: as a key input into food production, but also in processing and preparation, and as a food itself. Water scarcity and pollution are growing, affecting poorer populations most, and particularly food producers. Malnutrition levels are also on the rise, and this is closely linked to water scarcity. The achievement of Sustainable Development Goals (SDG) 2 and 6 are co-dependent. Solutions for jointly improving food systems and water security outcomes include: (1) strengthening efforts to retain water-based ecosystems and their functions; (2) improving agricultural water management for better diets for all; (3) reducing water and food losses beyond the farmgate; (4) coordinating water with nutrition and health interventions; (5) increasing the environmental sustainability of food systems; (6) explicitly addressing social inequities in water-nutrition linkages; and (7) improving data quality and monitoring for water-food system linkages, drawing on innovations in information and communications technology (ICT). Climate change and other environmental and societal changes make the implementation and scaling of solutions more urgent than ever. | Non-PR | 1 Fostering Climate-Resilient and Sustainable Food Supply; IFPRI4; DCA | Natural Resources and Resilience (NRR); Transformation Strategies
Показать больше [+] Меньше [-]Water footprint of food quality schemes Полный текст
2021
Donati, Michele | Torok, A | Gauvrit, Lisa | Arfini, Filippo | Gil Roig, José María | Universitat Politècnica de Catalunya. Departament d'Enginyeria Agroalimentària i Biotecnologia | Universitat Politècnica de Catalunya. CREDA - Centre de Recerca en Economia i Desenvolupament Agroalimentari
Water Footprint (WF, henceforth) is an indicator of water consumption and has taken ground to assess the impact of agricultural production processes over freshwater. The focus of this study was contrasting non-conventional, certified products with identical products obtained through conventional production schemes (REF, henceforth) using WF as a measure of their pressure on water resources. The aim was to the show whether products that are certified as Food Quality Schemes (FQS, henceforth) could also incorporate the lower impact on water among their quality features. To perform this comparison, we analysed 23 products selected among Organic, PDO and PGI as FQS, and their conventional counterparts. By restricting the domain of analysis to the on-farm phase of the production chain, we obtained that that no significant differences emerged between the FQS and REF products. However, if the impact is measured per unit area rather than per unit product, FQS showed a significant reduction in water demand. | Objectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables | Postprint (published version)
Показать больше [+] Меньше [-]Water Management for Sustainable Food Production Полный текст
2020
Kannan, Narayanan | Anandhi, Aavudai
The agricultural community has a challenge of increasing food production by more than 70% to meet demand from the global population increase by the mid-21st century. Sustainable food production involves the sustained availability of resources, such as water and energy, to agriculture. The key challenges to sustainable food production are population increase, increasing demands for food, climate change, and climate variability, decreasing per capita land and water resources. To discuss more details on (a) the challenges for sustainable food production and (b) mitigation options available, a special issue on “Water Management for Sustainable Food Production” was assembled. The special issue focused on issues such as irrigation using brackish water, virtual water trade, allocation of water resources, consequences of excess precipitation on crop yields, strategies to increase water productivity, rainwater harvesting, irrigation water management, deficit irrigation, and fertilization, environmental and socio-economic impacts, and irrigation water quality. Articles covered several water-related issues across the U.S., Asia, Middle-East, Africa, and Pakistan for sustainable food production. The articles in the special issue highlight the substantial impacts on agricultural production, water availability, and water quality in the face of increasing demands for food and energy.
Показать больше [+] Меньше [-]