Activity profiles of enzymes involved in glutamine and glutamate metabolism in the apple during autumnal senescence [Malus domestica cv. Golden Delicious, nitrogen, glutamine synthetase, glutamate synthetase, glutamate dehyrogenase, catalytic potential]
1980
Kang, S.-M. | Titus, J.S. (Illinois Univ., Urbana (USA). Dept. of Horticulture)
Seasonal changes in glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 2.6.1.53), and glutamate dehydrogenase (EC 1.4.1.3) were measured in both senescing leaf and bark tissues of 'Golden Delicious' apple trees (Malus domestica Borkh.). From the measured enzyme activities we attempted to estimate the in vivo catalytic potentials of the enzymes with special reference to nitrogen mobilization and conservation of senescing apple trees. The cumulative glutamine synthetase activity of leaf tissue was about three times higher than that of bark. The estimated catalytic potential of leaf glutamine synthetase was 800-fold higher than the actual protein nitrogen loss of sensecing leaves. The cumulative glutamate synthase activity of bark was about six times higher than that of leaf. The estimated catalytic potential of bark glutamate synthase was 160-times higher than the actual protein nitrogen gain in that tissue. The cumulative glutamate dehydrogenase activities in leaf and bark tissue were approximately the same. However, the catalytic potential of leaf glutamate dehydrogenase was twice that of leaf glutamatie synthtase. It is thus concluded that the physiological role of glutamine synthetase in senescing leaf tissue is to furnish the amide(s) prior to mobilization of nitrogen to storage tissue. The higher activity of glutamate synthase in bark tissue could provide a mechanism to transform the imported amide nitrogen to amino nitrogen of glutamate for storage protein synthesis. The possible regulatory factors upon the activity of these enzymes in the tissue of senescing apple trees are discussed
显示更多 [+] 显示较少 [-]