3D-Printed Bioactive Calcium Silicate/Poly-ε-Caprolactone Bioscaffolds Modified with Biomimetic Extracellular Matrices for Bone Regeneration
2019
Yuan-Haw Andrew Wu | Yung-Cheng Chiu | Yen-Hong Lin | Chia-Che Ho | Ming-You Shie | Yi-Wen Chen
Currently, clinically available orthopedic implants are extremely biocompatible but they lack specific biological characteristics that allow for further interaction with surrounding tissues. The extracellular matrix (ECM)-coated scaffolds have received considerable interest for bone regeneration due to their ability in upregulating regenerative cellular behaviors. This study delves into the designing and fabrication of three-dimensional (3D)-printed scaffolds that were made out of calcium silicate (CS), polycaprolactone (PCL), and decellularized ECM (dECM) from MG63 cells, generating a promising bone tissue engineering strategy that revolves around the concept of enhancing osteogenesis by creating an osteoinductive microenvironment with osteogenesis-promoting dECM. We cultured MG63 on scaffolds to obtain a dECM-coated CS/PCL scaffold and further studied the biological performance of the dECM hybrid scaffolds. The results indicated that the dECM-coated CS/PCL scaffolds exhibited excellent biocompatibility and effectively enhanced cellular adhesion, proliferation, and differentiation of human Wharton’s Jelly mesenchymal stem cells by increasing the expression of osteogenic-related genes. They also presented anti-inflammatory characteristics by showing a decrease in the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1). Histological analysis of in vivo experiments presented excellent bone regenerative capabilities of the dECM-coated scaffold. Overall, our work presented a promising technique for producing bioscaffolds that can augment bone tissue regeneration in numerous aspects.
显示更多 [+] 显示较少 [-]