Strong uniform consistency and asymptotic normality of a kernel based error density estimator in functional autoregressive models
2012
Hilgert, Nadine | Portier , Bruno
Estimating the innovation probability density is an important issue in any regression analysis. This paper focuses on functional autoregressive models. A residual-based kernel estimator is proposed for the innovation density. Asymptotic properties of this estimator depend on the average prediction error of the functional autoregressive function. Sufficient conditions are studied to provide strong uniform consistency and asymptotic normality of the kernel density estimator.
显示更多 [+] 显示较少 [-]AGROVOC关键词
书目信息
其它主题
Statistique mathématique; Kernel density estimation; Functional autoregressive models; Erreur d'estimation; Multivariate central limit theorem; Probabilité; Martingale approach; Mathématiques appliquées; Nonparametric residuals
语言
英语
类型
Journal Article
2016-10-15
2025-12-04
AGRIS AP