Carryover effects of winter mercury contamination on summer concentrations and reproductive performance in little auks
2023
Carravieri, Alice | Lorioux, Sophie | Angelier, Frédéric | Chastel, Olivier | Albert, Céline | Bråthen, Vegard Sandøy | Brisson-Curadeau, Émile | Clairbaux, Manon | Delord, Karine | Giraudeau, Mathieu | Perret, Samuel | Poupart, Timothée | Ribout, Cécile | Viricel-Pante, Amélia | Grémillet, David | Bustamante, Paco | Fort, Jérôme | LIttoral ENvironnement et Sociétés (LIENSs) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Fram Centre, Norwegian Institute for Nature Research (NINA) [Norway] ; Norwegian Institute for Nature Research (NINA) | McGill University = Université McGill [Montréal, Canada] | Marine Renewable Energy Ireland (MaREI) | Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) ; Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) | Station de Biologie Marine de Concarneau ; Direction générale déléguée à la Recherche, à l’Expertise, à la Valorisation et à l’Enseignement-Formation (DGD.REVE) ; Muséum national d'Histoire naturelle (MNHN)-Muséum national d'Histoire naturelle (MNHN) | Institut Universitaire de France (IUF) ; Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.) | ANR-16-CE34-0005,ILETOP,Impact des polluants historiques et émergents sur les prédateurs supérieurs marins de l'Arctique(2016) | ANR-16-TERC-0004,MAMBA,Contamination par le mercure des écosystèmes arctiques : sources, niveaux et impacts(2016) | ANR-20-CE34-0006,ARCTIC-STRESSORS,Effets combinés des stresseurs environnementaux multiples sur les oiseaux marins Arctiques(2020)
International audience
显示更多 [+] 显示较少 [-]英语. Many animals migrate after reproduction to respond to seasonal environmental changes. Environmental conditions experienced on non-breeding sites can have carryover effects on fitness. Exposure to harmful chemicals can vary widely between breeding and non-breeding grounds, but its carryover effects are poorly studied. Mercury (Hg) contamination is a major concern in the Arctic. Here we quantified winter Hg contamination and its carryover effects in the most abundant Arctic seabird, the little auk Alle. Winter Hg contamination of birds from an East Greenland population was inferred from head feather concentrations. Birds tracked with Global Location Sensors (GLS, N = 28 of the total 92) spent the winter in western and central North Atlantic waters and had increasing head feather Hg concentrations with increasing longitude (i.e., eastward). This spatial pattern was not predicted by environmental variables such as bathymetry, sea-surface temperature or productivity, and needs further investigation. Hg concentrations in head feathers and blood were strongly correlated, suggesting a carryover effect of adult winter contamination on the consequent summer concentrations. Head feather Hg concentrations had no clear association with telomere length, a robust fitness indicator. In contrast, carryover negative effects were detected on chick health, as parental Hg contamination in winter was associated with decreasing growth rate of chicks in summer. Head feather Hg concentrations of females were not associated with egg membrane Hg concentrations, or with egg volume. In addition, parental winter Hg contamination was not related to Hg burdens in chicks’ body feathers. Therefore, we hypothesise that the association between parental winter Hg exposure and the growth of their chick results from an Hg-related decrease in parental care, and needs further empirical evidence. Our results stress the need of considering parental contamination on non-breeding sites to understand Hg trans-generational effects in migrating seabirds, even at low concentrations.
显示更多 [+] 显示较少 [-]