AGRIS - 国际农业科技情报系统

Cell Selection of Some Durum Wheat Genotypes under Salinity Stress Based on the Biochemical and Molecular Criteria

2023

Mohamed Nayef Al- Hamoud


书目信息
出版者
Damascus University . Faculty of agricultural engineering
其它主题
Genetic kinship tree; الصفات الشكلية; الإجهاد الملحي; Issr; منظمات النمو; الأجنة الناضجة; Morphological traits; Biochemical traits; مضادات الأكسدة الأنزيمية; Antioxidant enzymes; شجرة القرابة الوراثية; Durum wheat; Growth regulators; Mature embryos; الكالس; الصفات البيوكيميائية
语言
阿拉伯
注释
References 1. Aadel H, Ahansal K, Udupa SM, Gaboun F, Abdelwahd R, Douira A, Iraqi D (2016) Effect of genotypes and culture media on embryogenic callus induction and plantlet regeneration from mature and immature bread wheat embryos. Agric Res 33:61-69. 2. Abd El-Fattah B.E.S. and Haridy A.G. (2019): Agro-morphological and molecular analysis of somaclonal variation among regenerated plants from tomato (Lycopersicon esculentum Mill.) varieties. Journal of Agricultural Chemistry and Biotechnology. Mansoura University.Vol. 10 (3): 57- 71. 3. Abdelgawad, H.; Zinta, G.; Hegab, M.M.; Pandey, R. 2016. High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs. Front. Plant Sci. 2016, 7, 276. 4. Abdullah HA, Said AGE, Khalafalla MM.2012. Establishment of an efficient callus induction and plant regeneration system in some wheat (Triticum aestivum L.) cultivars grown in Sudan. African Journal of Biotechnology.; 11(16):3793-3799. 5. Acosta-Motos. J, M. Ortuño, A. Bernal-Vicente, P. Diaz- Vivancos, M. Sanchez-Blanco, and J. Hernandez, 8104. “Plant responses to salt stress: adaptive mechanisms,” Agronomy, vol. 7, no. 1, pp. 18–55, 2017. 6. Agami, R. 2014. Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biologia Plant arum, 58(2): 341-347. 7. Ağıl .F, M. argeç, F. P. Karakaş, S. K. Verma and N. Zencirci. 2022. In vitro mature embryo culture protocol of einkorn (Triticum monococcum ssp. monococcum) and bread (Triticum aestivum L.) wheat under boron stress. Plant Cell, Tissue and Organ Culture (PCTOC) Vol. 148:293–304. 8. Ahanger, M. A., Mir, R. A., AL Yemeni, M. N., and Ahmad, P. (2020). Combined effects of brassino steroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and Osmolyte metabolism. Plant Physiol. Biochem. 147, 31–42. doi: 10.1016/j.plaphy.2019.12.007. 9. Ahmadpour R, Hosseinzadeh SR (2017). Evaluating the effects of water stress and urban waste compost on morphophysiological indices and yield components of lentil (Lens culinaris Medik). Journal of Iranian Plant Echophysiological Research 12(46):42-56. 10. Ahmad, M., Shahzad, A., Iqbal, M., Asif, M., and Hirani, A. H. (2013). Morphological and molecular genetic variation in wheat for salinity tolerance 11. Ahmad, P and M. N. V. Prasad .2012b. Environmental adaptations and stress tolerance in plants in the era of climate change. Springer Science + Business Media, New York. 12. Ahmad, P and M. N. V. Prasad. 2012a. Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York.13. Akram, N.A.; Ashraf, M. 2011. Pattern of accumulation of inorganic elements in sunflower (helianthus annuus L.) plants subjected to salt stress and exogenous application of 5-aminolevulinic acid. Pak. J. Bot. 43, 521–530. 14. Al Hattab .N .Z, M. Sh. Hamdalla, and M. A. Mohammed. 2015. Salinity effect on wheat Triticum aestivum L. callus growth and development. International Journal of Multidisciplinary and Current Research. Vol.3, p. 1185-1188. 15. Al Kharusi. L, R. Sunkar, R. Al-Yahyai, and M. W. Yaish. 2019. “Comparative water relations of two contrasting date palm genotypes under salinity,” International Journal of Agronomy, vol, Article ID 4262013, 16 pages, 2019. 16. Alam, M. M., Nahar, K., Hasanuzzaman, M., and Fujita, M. (2014). Trehalose induced drought stress tolerance: a comparative study among different Brassica species. Plant Omics 7:271. 17. Albiski, F., S. Najla, R. Sanoubar, N. Alkabani and R. Murshed. 2012. In vitro screening of potato lines for drought tolerance. Physiology and Molecular Biology of Plants,18(4):315–321. 18. AL-Huqail, A. A. (2019). Research Article Changes in Antioxidant Status, Water Relations and Physiological Indices of Maize Seedlings under Salinity stress Conditions. Journal of Biological Science.,(19), 331-338. 19. Ali, Q., Javed, M.T., Noman, A., Haider, M.Z., Waseem, M., Iqbal, N., Waseem, M.,Shah, M.S., Shahzad, F., Perveen, R., 2017. Assessment drought tolerance in mung bean cultivars/lines as depicted by the activities germination enzymes, seedling’s ant oxidative potential and nutrient cquisition.ArchAgron. Soil Sci .http://dx.doi.org/10.1080/03650340.2017.1335393 (Published online). 20. Alikina. O, M. Chernobrovkina, S. Dolgov, and D. Miroshnichenko, “Tissue culture efficiency of wheat species with different genomic formulas”. Crop Breed. Appl. Biotechnol., vol. 16, no. 4, 2016. https://doi.org/10.1590/1984- 70332016v16n4a46. 21. Al-Naggar AMM, Sabry SRS, Atta MMM, El-Aleem OMA (2015) Effects of salinity on performance, heritability, selection gain and correlations in wheat (Triticum aestivum L.) doubled haploids. Scientia Agriculture 10:70–83. 22. Alzahrani, F. O. (2021). Metabolic engineering of osmo protectants to elucidate the mechanism (s) of salt stress tolerance in crop plants. Planta 253, 1–17.doi: 10.1007/s00425-020-03550-8. 23. Alzahrani, S.M., I.A. Alaraidh, H. Migdadi, S. Alghamdi, M.A. Khan and P. Ahmad. 2019. Physiological, Biochemical and antioxidant properties of two genotypes of Vicia faba grown under salinity stress. Pak. J. Bot., 51(3): 786-798. 24. Amid A., Johan N.N., Jamal P. and Zain W.N.W. (2011): Observation of antioxidant activity of leaves, callus and suspension culture of Justicia gendarusa. African Journal of Biotechnology, 10 (81): 18653-18656.25. An, Y., Zhang, M., Liu, G., Han, R. and Liang, Z. 2013. Proline Accumulation in Leaves of Periploca sepium via Both Biosynthesis Up-Regulation and Transport during Recovery from Severe Drought. PLOS ONE, 8:e69942. 26. Anil V.S., Bennur S. and Lobo S. (2018): Soma clonal variations for crop improvement: Selection for disease resistant variants in vitro. Plant Science Today, 5(2): 44-54. 27. Anonymous. 2013. International Grains Council, Five-year Global Supply and Demand Projections. 10 December 2013, p. 2. 28. Anosheh HP, Sadeghi H, Emam Y, (2011). Chemical priming with urea and KNO3 enhances maize hybrids (Zea mays L.) seed viability under abiotic stress. J Crop Sci Biotechnol, 14(4):289-295. 29. Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., and Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: an Omics approach towards salt stress tolerance. Plant Physiol. Biochem. 156, 64–77. 30. Arora, N. K. (2019). Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2, 95–96. doi: 10.1007/s42398-019-00078-w. 31. Arzani, A., and Ashraf, M. (2016). Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critic. Rev. Plant Sci. 35, 146–189. doi: 10.1080/07352689.2016.1245056. 32. Ashraf M, Harris PJC.2013. Photosynthesis under stressful environments: An overview. Photosynthetica ;51:163-190. - Ashraf, M., and M. R. Fooled, 2007: Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206– 216. 33. Aslan-Parviz, M., Omidi, M., Rashidi, V., Etminan, E., and Ahmadzadeh, A. (2020). Evaluation of genetic diversity of durum wheat (Triticum durum Desf.) genotypes using Inter-Simple Sequence Repeats (ISSR) and CAAT box-derived polymorphism (CBDP) markers, 52(3), 895-909. 34. Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D.,et al. (2015). Rising temperatures reduce global wheat production. Nat. Climat germination and early seedling stage. Austral. J. Crop Sci. 7:66. 35. Atwa M.M. and Aboshama H.M. (2019): In vitro evaluation of somaclonal variation of two potato cultivars Santana and Spunta for resistance against bacterial blackleg pecto bacterium atrosepticum. Journal of Plant Biochemistry and Physiology. Vol. 7 (243). 36. Ayala, A.; Muñoz, M.F.; Argüelles, S. 2014. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxide. Med. Cell Longev., 360-438. 37. Aydın M, Sağsöz S, Haliloğlu K, Tosun M (2011) Factors affecting wheat mature embryo culture. J Faculty Agri Süleyman Demirel Univ 42(1):1–1038. Badawi, T. A. (2015). Wheat-based Production Systems for Food Security and Poverty Alleviation in the Near East and North Africa: New Challenges and Technological Opportunities. FAO, Rome. 39. Baday, S.J.S. 2018. In vitro study of the callus induction of two varieties of wheat seeds by plant growth regulators. Biochem. Cell. Arch, 18: 2067-2071. 40. Bargaz, A., Zaman-Allah, M., Farissi, M., Lazali, M., Drevon, J.-J., Maougal, R., et al. (2015). Physiological and molecular aspects of tolerance to environmental constraints in grain and forage legumes. Int. J. Mol. Sci. 16, 18976–19008. 41. Başçiftçi. Z, M. O. Serap, S. Nalan, Y. Nazife, A. G. Ağar. 2021. Determination of genetic divergence in some bread wheat varieties by IRAP and ISSR analyses. Biological Diversity and Conservation, Volume 14, Issue 1, 35 – 39. 42. Bates, L.S., R. P. Walgreen and I. D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and soil, 39(1): 205-207. 43. Batjuka, A.; Škute, N.; Petjukevičs, A. 2016. The influence of antimycin a on pigment composition and functional activity of photosynthetic apparatus of Triticum aestivum L. Under high temperature. Photosynthetica, 55, 1–14. 44. Bednarek P.T and Orłowska R. (2020): Plant tissue culture environment as a switch key of (epi) genetic changes. Plant Cell, Tissue and Organ Culture (PCTOC). 140: 245–257. 45. Begum M.K., Islam M.O., Miah M.A.S., Hossain M.A. and Islam N. (2011) Production of somaclone in vitro for drought stress tolerant plantlet selection in sugarcane (Saccharum officinarum L.). The Agriculturists. 9(1&2): 18-28. 46. Beres, B.L.; Hatfield, J.L.; Kirkegaard, J.A.; Eigenbrode, S.D.; Pan, W.L.; Lollato, R.P.; Hunt, J.R.; Strydhorst, S.; Porker, K.; Lyon, D.2020. Towards a better understanding of Genotype × Environment × Management interactions—A global Wheat Initiative agronomic research strategy. Front. Plant Sci. 11, 828. 47. Beerh, O.P., Siddappa, G.S., 1959. A rapid spectrophotometric method for the detection and estimation of adulterants in tomato ketchup. Food Technol. 13, 414/418. 48. Blum A.2017. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell and Environment; 40:4e10. 49. Bose J, Rodrigo-Moreno A, Shabala S.2014. ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany.;65:1241-1257. DOI: 10.1093/jxb/ert430. 50. Bouiamrine E, Diouri M, El-Halimi R (2012). Somatic embryogenesis and plant regeneration capacity from mature and immature durum wheat embryos. International Journal of Biosciences 2(9):29-39. 51. Bradford, M. M .1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein due binding. Annals of Biochemistry, 72: 248- 254.52. Bulley S., Laing W. (2016). The regulation of ascorbate biosynthesis. Curr. Opin. Plant Biol. 33, 15–22. 53. Bybordi A. (2012). Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in canola exposure to salt stress. J. Integr. Agric. 11, 1610–1620. 54. Cai XD, Wang G, Cao W.2013. In vitro induction and proliferation of callus from immature cotyledons and embryos of Juglans regia cv.‘Xiangling’. Not Bot Hort Agro Bo; 41:378-84. 55. Campos, M.D.; Nogales, A.; Cardoso, H.G.; Campos, C.; Grzebelus, D.; Velada, I.; Arnholdt-Schmitt, B.2016. Carrot plastid terminal oxidase gene (dcptox) responds early to chilling and harbors intronic pre-mirnas related to plant disease defense. Plant Gene, 7, 21–25. 56. Cadenas, E. (1989). Biochemistry of Oxygen Toxicity. Annual Review of Biochemistry, 58, 79-110. 57. Cannella, D.; Möllers, K.B.; Frigaard, N.U.; Jensen, P.E.; Bjerrum, M.J.; Johansen, K.S.; Felby, C.2016. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nat. Commun. 7, 11134. 58. Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2014). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and molecular biology, 35(4), 1011-1019. central hub for information flow in plant cells. AoB PLANTS 2012:pls014. 59. Chamorro, D., Luna, B., Ourcival, J. M., Kavgac,i, A., Sirca, C., Mouillot, F., et al. (2017). Germination sensitivity to water stress in four shrubby species across the Mediterranean Basin. Plant Biol. 19, 23–31. 60. Chaves, M.M.; Flexas, J.; Pinheiro, C.2009. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot, 103, 551–560. 61. Chen, H., and Jiang, J. G. (2010). Osmotic adjustment and plant adaptation . Int. J. Agric. Biol, 16, 624–628. 62. Choi D. W., and Close T. J., (2000). A newly identified barley gene, Dhn12, encoding a YSK2 DHN, is isolated on chromosome 6H and has embryo-specific expression. Theor Appl Genet 100:1274-1278. 63. Chuluun, B.; Shah, S.H.; Rhee, J.-S. 2014. Bioaugmented phytoremediation: A strategy for reclamation of diesel oil-contaminated soils. Int. J. Agric. Biol. , 16, 624–628. 64. Cisse, A., Arshad, A., Wang, X., Yattara, F., and Hu, Y. (2019). Contrasting impacts of long-term application of bio fertilizers and organic manure on grain yield of winter wheat in North China Plain. Agronomy 9:312.65. Conti V., Mareri L., Faleri C., Nepi M, Romi M., Cai G. and Cantini C. (2019): Drought stress affects the response of Italian local tomato (Solanum lycopersicum L.) varieties in a genotype-dependent manner. Plants. 8, 336. 66. Coskun, Y., Duran, R.E., Savaskan, C., Demirci, T. & Hakan, M.T. 2013. Efficient plant regeneration with arabinogalactan- proteins on various ploidy levels of cereals. Journal of Integrative Agriculture 12(3): 420-425. 67. Cossgrove, D.J. 1989. Linkage of wall extension with water and solute uptake. Physiology of cell Expansion During plant growth (D.J.Cossgrove and P. Knievel,ed, ed.). Am.Sci. Plant Physiology .Rockville,Md.P.88-100. 68. Dahl, C.2019. Global Durum Outlook. Available online : (accessed on 27 May). http://www.italmopa.com/wp-content/uploads/2017/05/ 144_all_1.pdf. 69. Dargahlou .A. S , E. D. Uliaie, and A. Bandehagh. 2017. Callus induction and plant regeneration from mature embryos of some Iranian wheat (Triticum aestivum L.) genotypes. J. Bio. & Env. Sci. Vol. 10, No. 5, p. 275-283. 70. De Pinto, M. C., D. Francis and Gara, L. 1999. The redox state of ascorbate dihydro ascorbate pairs a specific sensor of cell division in tobacco by cells'. Proto plasma. 209, 90 -97. 71. De Riek, J.; Calsyn, E.; Everaert, I.; Van, Bockstaele, E.; De Loose, M. AFLP. (2001). AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theoretical and Applied Genetics 103: 1254-1265. doi: 10.1007/s001220100710. 72. Dehnavi, A. R., Zahedi, M., Ludwiczak, A., Cardenas Perez, S., and Piernik, Demidchik, V., Straltsova, D., Medvedev, S.S., Pozhvanov, G.A., Sokolik, A., Yurin, V., 2014. Stress-induced electrolyte leakage: the role of k+-permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot. 65, 1259–1270. doi: 10.3390/agronomy10060859. 73. Demidchik V., Straltsova D., Medvedev S. S., Pozhvanov G. A., Sokolik A. and Yurin V.(2014). Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment . J Exp Bot 65(5): 1259-1270. 74. Dong, K., Zhen, S., Cheng, Z., Cao, H., Ge, P., and Yan, Y. 2015. Proteomic Analysis Reveals Key Proteins and Phospho proteins upon Seed Germination of Wheat (Triticum aestivum L.). Front.PlantSci.6:1017 75. Efferth .T.( 2019). Biotechnology Applications of Plant Callus Cultures. Journal Engineering. Vol.5, p. 50-59. 76. El Sabagh, A., Hossain, A., Islam, M. S., Barutcular, C., Hussain, S., Hasanuzzaman, M., et al. (2019). Drought and salinity stresses in barley: consequences and mitigation strategies. Austral. J. Crop Sci. 13:810.77. Elhakem. A. H. 2020. Growth, Water Relations, and Photosynthetic Activity Are Associated with Evaluating Salinity Stress Tolerance of Wheat Cultivars. International Journal of Agronomy, Article ID 8882486, 9 pages. 78. El-Hendawy, S., Elshafei, A., Al-Suhaibani, N., Alotabi, M., Hassan, W., Dewir, Y. H., et al. (2019). Assessment of the salt tolerance of wheat genotypes during the germination stage based on germination ability parameters and associated SSR markers. J. Plant Interact. 14, 151–163. 79. Elmeer, K.E.S. 2013. Factors regulating somatic embryogenesis in plants. In Somatic Embryogenesis and Gene Expression, edited by Aslam, J., Srivastava, P.S. & Sharma, M.P. New Delhi, India: Narosa Publishing House. pp. 56-81. 80. El-Sherbeny, G. A. R., Omara, M. K., Farrage, A. A., & Khaled, A. G. A. (2020). Associations between ISSR Markers and Quantitative Traits in Bread Wheat Genotypes. Asian Journal of Research in Biosciences, 2(1), 1-8. 81. Emam, Y.; Hosseini, E. and Rafiei, N. 2013. Response of early growth and sodium and potassium concentration in ten barley (Hordeum vulgare L.) cultivars under salt stress conditions. Crop Physiol J, 19:5-15. 82. FAO (Food and Agriculture Organization of the United Nations). 2016. FAO fertilizer and plant nutrition bulletin: Guide to laboratory establishment for plant nutrient analysis. FAO, Rome, Italy. 203p. 83. FAOSTAT data. (2021). http://apps.fao.org/faostat/deful.jsp, accessed. 84. Farhan, M. B., Abdulhamed, Z. A., Noaman, A. H., & Abod, N. M. (2019). Determination of genetic distance among genotypes of bread wheat (Triticum aestivum L.), using ISSR markers. Plant Archives, 19(1), 455–459. 85. Fatima, A., A.A. Singh, A. Mukherjee, M. Agrawal and S.B. Agrawal. 2019. Ascorbic acid and thiols as potential biomarkers of ozone tolerance in tropical wheat cultivars. Ecotoxicol. & Environ. Safety, 171: 701-708. 86. Fazeli-nasab, B.; O. Masour and A. Mehdi. 2012. Estimate of callus induction and volume immature and mature embryo culture and respons to in-vitro salt resistance in presence of NaCL and ABA in salt tolerant wheat cultivars. Intl Agri Crop Sci., 4(1):8-16. 87. Fehér A. (2019): Callus, dedifferentiation, tot potency, somatic embryogenesis: what these terms mean in the era of molecular plant biology? Frontiers in Plant Science. 10:536. 88. Fercha A., H. Gherroucha and M. Baka (2011). Improvement of salt tolerance in durum wheat by vitamin C application. J. Stress Physiol. And Biochemistry, 7(1): 27-37. 89. Fernández-Marín, B.; Artetxe, U.; Barrutia, O.; Esteban, R.; Hernández, A.; García-Plazaola, J.I. 2015. Opening Pandora’s box: Cause and impact of errors on plant pigment studies. Front. Plant Sci, 6, 148.90. Filippou, P.; Antoniou, C.; Obata, T.; Van Der Kelen, K.; Harokopos, V.; Kanetis, L.; Aidinis, V.; Van Breusegem, F.; Fernie, A.R.; Fotopoulos, V. 2016. Kresoxim-methyl primes medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signaling leading to downstream transcriptional and metabolic readjustment. J. Exp. Bot, 67, 1259–1274. 91. Foyer, C. H., and Noctor, G. (2009). Redox regulation iPhoto synthetic organisms: signaling, acclimation, and practical implications. Antioxid.Redox Signal. 11, 861–905. 92. Flowers TJ, Troke PF, Yeo AR. 1977. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28:89–121. 92. Gardner, W. K. (2016). Sodium, calcium and magnesium ratios in soils of NW Victoria, Australia may restrict root growth and crop production. J. Plant Nutr. 39, 1205–1215. 93. Garg, G and Neha, P (2019). Plant transcription factors networking of pyroline-5-carboxylate (P5C) enzyme under stress condition: a review. Plant Archives 19: 562–569. 94. Ganbalani A.N; Nouri-Ganbalani G. and Hassanpanah D. 2010. Comparison of drought tolerance indices of 15 advanced einter and intermediate cold hardly wheat Genotypes in Ardabil, Iran. Research Journal of Environmental Science. 4, 180-186. 95. Ge P, Hao P, Cao M, Guo G, Lv D, Subburaj S, Li X, Yan X, Xiao J, Ma W and Yan Y (2013) iTRAQ -based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress. Proteomics 13:3046-3058. 96. Ghartavol N.S., Khaniki G.B. and Karimi F. (2010): Evaluation of somaclonal variation during repetitious subcultures of tobacco (Nicotiana tabacum L.) callus. Iranian Journal of Plant Physiology, Vol (1), No (2). 69-72. 97. Gill, S and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12):909–930. 98. Goli, A., Jorjani, I., Sabouri, H. and Fallahi, H. 2016. Assessment of genetic diversity of facultative wheat genotypes belong to north of Iran using ISSR markers. Journal of Crop Breeding 8 (20): 165-174. 99. Gomez, A., Wright, P. J., Lunt, D. H., Cancino, J. M., Carvalho, G. R., & Hughes, R. N. (2007). Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proceedings of the Royal Society B: Biological Sciences, 274(1607), 199-207. 100. Gorai, M, M. Ennajeh, H. Khemira and M. Neffati . 2010. Combined effect of NaCl-salinity and hypoxia on growth, photosynthesis, water relations and soluteaccumulation in Phragmites australis plants. Flora. Morphology, Distribution, Functional Ecology of Plants, 205:462-470. 101. Gugsa, L., Kumlehn, J. 2011.Somatic embryogenesis and massive shoot regeneration from immature embryo explants of Tef. Biotechnol. Res. Int :1–7. 102. Hafeez I, Sadia B, Sadaqat NA, Kainth RA, Iqbal MZ, Khan IA (2012). Establishment of efficient in vitro culture protocol for wheat land races of Pakistan. African Journal of Biotechnology 11(11):2782-2790. 103. Hamid, K., and K. Sadaf (2014). Study of Plant Tissue Culture Technology. J. Biol. Chem. Research. 31(2): 1236-1244. 104. Handayani T., Gilani S.A. and Watanabe K.N. (2019): Climatic changes and potatoes: How can we cope with the abiotic stresses? Breeding Science. 69: 545–563. 105. Hanin, M., Ebel, C., Ngom, M., Laplaze, L., and Masmoudi, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci. 7:1787. 106. Haque M, Islam SMS. 2015. Callus age and size of barley (Hordeum vulgare L.) improves regeneration efficiency. Not Sci Biol;7:188–191. 107. Haque, A. U., Samad, M. E., & Shapla, T. L. (2009). In vitro callus initiation and regeneration of potato. Bangladesh Journal of Agricultural Research, 34(3), 449-456. 108. Hasan, A., Hafiz, H. R., Siddiqui, N., Khatun, M., Islam, R., and Mamun, A. A. (2015). Evaluation of wheat genotypes for salt tolerance based on some physiological traits. J. Crop Sci. Biotechnol. 18, 333–340. 109. Hasanuzzaman, M., Alam, M., Rahman, A., Hasanuzzaman, M., Nahar, K., and Fujita, M. (2014). Exogenous proline and glycine betaine mediated up regulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Bio Med. Res. Int:75-72. 110. Hasanuzzaman, M., Hossain, M. A., and Fujita, M. (2011). Selenium-induced up regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol. Trace Element Res. 143, 1704–1721. 111. Hasanuzzaman, M., Nahar, K., Rahman, A., Anee, T.I., Alam, M.U., Bhuiyan, T.F., Oku, H., Fujita, M., 2017. Approaches to enhance salt stress tolerance in wheat. In: Wheat Improvement, Management and Utilization. Intchopen, London, https://doi.org/10.5772/67247. 112. Hasanuzzaman. Md, Md. M. Islam, N. R. Saha, S. Farabi And M. Shahidul Haque. 2021. In-Vitro Call genesis And Regeneration From Mature Embryos Of Bangladeshi Wheat (Triticum Aestivum L.) Cultivars. Plant Cell Biotechnology And Molecular Biology 22(33&34):381-390. 113. Hassan. A, M. H. Saleem2, A. P. Mobeen1, S. Ali3. 2022. Oxidative Stress Alleviation As Indicated By Enzymatic And No enzymatic Antioxidants AndOsmo regulators In Barley (Hordeum Vulgare L.) Under Salt (Nacl) Stress By Ascorbic Acid (AsA). Pak. J. Bot., 54(1): http://.doi.org/10.30848/PJB2022-1(42). 114. Hassan. A, S.F. Amjad, M.H. Saleem, H. Yasmin, M. Imran, M. Riaz, Q. Ali, F.A. Joyia, S. Ahmed and S. Ali. 2021. “ Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression,” Saudi Journal of Biological Sciences. 115. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signal Behave 7:1456–1466. 116. Heap, I. 2014. Global perspective of herbicide-resistant weeds. Pest Management Science. Special issue: Global herbicide resistance challenge. Vol. 70, Issue 9, pp.1306–1315. 117. Heidari, P., Etminan, A., Azizinezhad, R., & Khosroshahli, M. (2018). In vitro-examination of genetic parameters and estimation of seedling physiological traits under drought and normal conditions in durum wheat. Indian Journal of Genetics and Plant Breeding, 78(2), 217–227. 118. Helaly, M.N.M. and A. M. R. H. El-Hosieny. 2011. Effectiveness of gamma irradiated protoplast on improving salt tolerance of lemon (Citrus lemon L. Burm.f.). American Journal of Biochemistry and Biotechnology, 6(4): 190-208. 119. Hernandez, M., Fernandez-Garcia, N., Diaz-Vivancos, P., Olmos, E., 2010. A different role for hydrogen peroxide and the anti-oxidative system under short and long salt stress in Brassica oleracea roots. J. Expert. Bot. 61, 521e535. 120. Higbie, S.M.; Wang, F.; Stewart, J.M.; Sterling, T.M.; Lindemann, W.C.; Hughs, E.; Zhang, J. (2010). Physiological response to salt (nacl) stress in selected cultivated tetraploid cottons. Int. J. Agron., 12. 121. Hniličková H., Hnilička F., Orsák M., Hejnák V. (2019): Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil Environ., 65. https://doi.org/10.17221/620/2019-PSE. 122. Hossain, M. A., Hoque, T. S., Zaid, A., Wani, S. H., Mostofa, M. G., and Henry, R. (2021). “Targeting the ascorbate-glutathione pathway and the glyoxalase pathway for genetic engineering of abiotic stress-tolerance in rice,” in Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality, eds M. A. Hossain, L. Hassan, K. M. Iftekharuddaula, A. Kumar A, and R. Henry R (Wiley-Blackwell), 398–427. 123. Houborg, R.; McCabe, M.; Cescatti, A.; Gao, F.; Schull, M.; Gitelson, A. (2015). Joint leaf chlorophyll content and leaf area index retrieval from landsat data using a regularized model inversion system (regflec). Remote Sens. Environ. 2015, 159, 203–221. 124. Huang, C.J.; Wei, G.; Jie, Y.C.; Xu, J.J.; Zhao, S.Y.; Wang, L.C.; Anjum, S.A. 2015. Responses of gas exchange, chlorophyll synthesis and ros-scavengingsystems to salinity stress in two ramie (boehmeria nivea L.) cultivars. Photosynthetica, 53, 455–463. 125. Huang, M., Chai, L., Jiang, D., Zhang, M., Zhao, Y., and Huang, Y. (2019). Increasing aridity affects soil archaeal communities by mediating soil niches in semi-arid regions. Sci. Total Environ. 647, 699–707. 126. Hussain, S., Shaukat,M., Ashraf,M., Zhu, C., Jin, Q., and Zhang, J. (2019). Salinity stress in arid and semi-arid climates: Effects and management in field crops. Clim. Change Agric 123–145. doi: 10.5772/intechopen.87982 127. Ikeuchi M., Sugimoto K. and Iwase A. (2013): Plant callus: mechanisms of induction and repression. Plant Cell. 25, 3159–3173. 128. Imran, M., X. Sun, S. Hussain, M.S. Rana, M.H. Saleem, M. Riaz, X. Tang, I. Khan and C. Hu. 2020. Molybdenum supply increases root system growth of winter wheat by enhancing nitric oxide accumulation and expression of nrt genes. Plant and Soil, 1-14. 129. Imran, M., X. Sun, S. Hussain, U. Ali, M.S. Rana, F. Rasul, M.H. Saleem, M.G. Moussa, P. Bhantana and J. Afzal. 2019. Molybdenum-induced effects on nitrogen metabolism enzymes and elemental profile of winter wheat (Triticum aestivum L.) under different nitrogen sources. Inter. J. Molec. Sci., 20(12): 3009. 130. Iqbal, M. A., Junaid, R., Wajid, N., Sabry, H., Yassir, K., and Ayman, S. (2021). Rain fed winter wheat (Triticum aestivum L.) cultivars respond differently to integrated fertilization in Pakistan. Fresenius Environ. Bull. 30, 3115–3121. 131. Iqbal, M. J. (2018b). Role of Osmolytes and antioxidant enzymes for drought tolerance in wheat. Global Wheat Production, 51. 132. Iqbal, M., Irshad, S., Nadeem,M., Fatima, T., and Itrat, A. B. (2018a). Salinity effects on wheat (Triticum aestivum L.) characteristics: a review article. Int. J Agric. Biol. 12, 1–15. 133. Irfan H, Bushra S.H.A,Riaz S.A.Khan, Muhammad Z.I & Iqrar A.K (2012). Establishment of efficient in vitro culture protocol for wheat land races of Pakistan. A fr J Biotech11(11):2782-2790.302. 134. Isayenkov, S.V., Maathuis, F.J.M., 2019. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. https://doi.org/10.3389/fpls . 00080. 135. Ishaq, H., Nawaz, M., Azeem, M., Mehwish, M., & Naseem, M. B. (2021). Ascorbic Acid (AsA) improves Salinity Tolerance in Wheat (Triticum Aestivum L.) by Modulating Growth and Physiological Attributes, Journal of Bio resource Management, 8 (1). J Biores Manag., 7(4): 1-10. 136. Ismael A. Khatab, Almoataz Bellah Ali El-Mouhamady, Samah A Mariey and T. A. Elewa (2019). Assessment of Water Deficiency Tolerance Indices and their Relation with ISSR Markers in Barley (Hordeum vulgare L.) Current Science International ISSN: 2077-4435 Volume: 08. Pages: 83-100.137. Jabeen S, Khaliq I, Togo J, Sajjad M, ul Malook S, (2016). tissue culture technology is a breeding approach in wheat: an overview. Mol Plant Breed. https:// doi. org/ 10. 5376/ mpb. 2016. 07. 0013. 138. Jalil S.U., Ansari M.I. (2019): Role of phytohormones in recuperating salt stress. In: Akhtar M.S. (ed.): Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches. Singapore, Springer. ISBN 978-981-13-8805-7. 139. Jan, A. U., Hadi, F., Nawaz, M. A., and Rahman, K. (2017). Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). Plant Physiol. Biochem. 116, 139–149. 140. Jasdeep, T. Avijit, S. Varsha, V. Harinder, Singh G.P. and S. Sanjay. 2019. Cultivar specific response of callus induction and plant regeneration from mature embryos in different elite Indian wheat. 141. Jha, U. C., Bohra, A., Jha, R., and Parida, S. K. (2019). Salinity stress response and “Omics” approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Rep. 38, 255–277. doi: 10.1007/s00299-019-02374-5. 142. Jiang, Y.; Ding, X.; Zhang, D.; Deng, Q.; Yu, C.-L.; Zhou, S.; Hui, D. 2017. Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants. Environ. Exp. Bot, 133, 70–77. 143. Kacem N. S., Delporte F., Muhovski Y., Djekoun A. and Watillon B. (2017): In vitro screening of durum wheat against water-stress mediated trought polyethylene glycol. Journal of Genetic Engineering and Biotechnology, 15, 239-247. 144. Kamran, M., A. Parveen, S. Ahmar, Z. Malik, S. Hussain, M.S. Chattha, M.H. Saleem, M. Adil, P. Heidari and J.-T. Chen. 2019. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Inter. J. Mole. Sci. 21(1): 148. 145. Kanbar, A. and K. Kondo. 2011. Efficiency of ISSR and RAPD Dominant Markers in Assessing Genetic Diversity among Japanese and Syrian Cultivars of Barley (H. Vulgare L.). Research journal of agriculture and biological, 7(1): 4-10. 146. Kandil. A.A, A.E. Sharief and M.A. Elokda. 2012. Germination and Seedling Characters of Different Wheat Cultivars under Salinity Stress. Journal of Basic & Applied Sciences, Vol 8, P. 585-596. 147. Kareem T.K. and Karrar A.T. (2018): Biochemical and physiological changes of callus growth and lycopene pigment production from tomato (Lycopersicon esculentum Mill.) under drought stress. International Journal of Innovative Science and Technology. 3(2), 7-21. 148. Karimi N, Ghasmpour H.R and Yari M. (2014): Effect of different growth regulators on callus induction and plant regeneration of satureja species. Annual Research and Review in Biology. 4(16): 2646 2654.149. Kaur, H., Bhardwaj, R. D., and Grewal, S. K. (2017). Mitigation of salinity induced oxidative damage in wheat (Triticum aestivum L.) seedlings by exogenous application of phenolic acids. Acta Physiol. Plant. 39:221. 150. Kaveh, H., H. Nemati, M. Farsi and S. V. Jartoodeh. 2011. How salinity affect germination and emergence of tomato lines. Journal of Biodiversity and Environmental Sciences, 5:159–163. 151. Khalid M, Arshad M, Muhammad G& A R (2013). Tissue culture responses of some wheat (Triticum aestivum L.) cultivars grown in Pakistan. Pak J Bot 45:545-549. 152. Khalil F.; Naiyan X., Tayyab M. and Pinghua C. (2018): Screening of ems-induced Salinity stress sugarcane mutants employing physiological, molecular and enzymatic approaches. Agronomy, 8, 226. 153. Khan, A.L.; Hamayun, M.; Kim, Y.H.; Kang, S.M.; Lee, I.J. 2011. Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of glycine max L. Plant Physiol. Biochem, 49, 852–861 154. Khan, M. A. and D. J. Weber 2008. Eco physiology of high salinity tolerant plants (tasks for vegetation science). 1st edn. Springer, Amsterdam. 155. Khan, T.A., M. Mazid and F. Mohammad. 2011. A review of ascorbic acid potentialities against oxidative stress induced in plants. Journal of Agrobiology, 28, 2: 97-111. 156. Khokhar, M.I., M.Z. Iqbal and J.A.T. Da Silva (2016). In vitro regeneration of five wheat genotypes from immature zygotic embryos. Pak. J. Bot., 48 (6): 2499-2504. 157. Khuder. H. H, Y. I. H. AL-Taei. 2015. Effect of Salt Stress on Some Growth Indicators and Cellular Components of Wheat (Triticum aestivum L.) Callus. International Journal of Applied Agricultural Sciences. Volume 1, Issue 4, Pages: 91-94. 158. Kizilgeci, F., Yildirim, M., Islam, M. S., Ratnasekera, D., Iqbal, M. A., and Sabagh, A. E. (2021). Normalized difference vegetation index and chlorophyll content for precision nitrogen management in durum wheat cultivars under semi-arid conditions. Sustainability 13:3725. doi: 10.3390/su13073725. 158. Kumar A, Sengar RS, Sharma MK, Singh VK. 2015. Effect of plant growth regulators on in vitro callus induction and plant regeneration from mature wheat (Triticum aestivum L.) embryos. Vegetos-An International Journal of Plant Research 28, 54-61. 159. Kumar, P., Sharma, V., Sanger, R., Kumar, P., & Yadav, M. K. (2020). Analysis of molecular variation among diverse background wheat (Triticum aestivum L.) genotypes with the help of ISSR markers. International Journal of Chemical Studies, 8(3), 271–276.160. Kumari, A., and Kaur, R. (2018). Evaluation of benzyl-butyl phthalate induced germination and early growth vulnerability to barley seedlings (Hordeum vulgare L.). Indian J. Ecol. 45, 174–177. 161. Kundu, P., Gill, R., Ahlawat, S., Anjum, N. A., Sharma, K. K., Ansari, A. A., et al. (2018). “Targeting the redox regulatory mechanisms for abiotic stress tolerance in crops” in Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants, ed S. H. Wani (Elsevier Academic Press), 151–220. 162. Kyriienko, A.V., Shcherbak, N.L., Kuchuk, M.V., Parii, M.F., Symonenko, v. 2020. In vitro plant regeneration from mature embryos of amphidiploid spelt Triticum spelta L. In vitro Cell Dev Biol Plant, 56: 610-617. 163. Lata C, Kumar A, Sharma SK, Singh J, Sheokand S, Pooja, Mann A and Rani B. 2017. Tolerance to combined boron and salt stress in wheat varieties: Biochemical and molecular characterization. Indian Journal of Experimental Biology 55: 321–8. 164. Lawyer, F.; S. Stoffel, R. Saiki, S. Chang, P. Landre, R. Abramson, and D. Gelfand 1993. High-level expression, purification, and enzymatic characterization of full-length Thermos aquatics DNA polymerase and a truncated form deficient in 5' to 3' exo nuclease activity. PCR methods and applications, 2 (4): 275–287. 165. Le Roux. M.L, A. M. Botha ,and C. van der Vyver. 2016. Somatic embryogenesis and cryopreservation of South African bread wheat (Triticum aestivum L.) genotypes. South African Journal of Botany. Vol.6, p. 78-88. 166. Lee, S.S.; Shah, H.S.; Awad, Y.M.; Kumar, S.; Ok, Y.S. 2015. Synergy effects of biochar and polyacrylamide on plants growth and soil erosion control. Environ. Earth Sci, 74, 2463–2473. 167. Leopold, A. C.; Musgrave, M. E. and Williams, K. M. 1981. Solute Leakage resulting from leaf desiccation. Plant Physiology 68:1222-1225. 168. Leva A.R., Petruccelli R. and Rinaldi L.M.R. (2012): Soma clonal variation in tissue culture: a case study with olive. Chapter 7. In Recent Advances in Plant In Vitro Culture. Pp:123-150. 169. Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011. 170. Lichtenthaler, H. K. and Buschmann, C. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, Unit F4.3: 1-8. 171. Lieber MM. 2013. New practical and theoretical approaches to the induction of morphogenesis from plant tumors in vitro using new types of plant growth regulators: towards constructive paradigms in agriculture and medicine. Theory Biol Forum; 106(1–2):73–87.172. Liu, X., Chen, D., Yang, T., Huang, F., Fu, S., and Li, L. (2020). Changes in soil labile and recalcitrant carbon pools after land-use change in a semi-arid agro-pastoral ecotone in Central Asia. Ecol. Indic. 110:105925. 173. Lotfi R, Ghassemi-Golezani K, Pessarakli M. 2020. Salicylic acid regulatesphotosynthetic electron transfer and stomatal conductance of mung bean(Vigna radiata L.) under salinity stress. Biocatalysis and Agricultural Biotechnology.; 26- 35. 174. Loutfy N, Sakuma Y, Gupta DK. 2020. Modifications of water status, growth rate and antioxidant system in two wheat cultivars as affected by salinity stress and salicylic acid. Journal of Plant Research;133:549-570 175. Maas. EV, Hoffman. GJ. 1977. Crop salt tolerance – current assessment. J Irrig Drain Div. 103, 115- 134. 176. Machado, R.M.A. and Serralheiro, R.P. (2017). Soil salinity: effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulture, 3(2):30. 177. Mahboob, W., M.A. Khan and M.U. Shirazi. 2016. Induction of salt tolerance in wheat (Triticum aestivum L.) seedlings through exogenous application of proline. Pak. J. Bot., 48: 861-867. 178. Mahmood I, Razzaq A (2017) Responses of explant type of wheat (Triticum aestivum L.) genotypes to different tissue culture media. J Natl Sci Found Sri Lanka 45:265–271. https:// doi. org/ 10. 4038/ jnsfsr. v45i3. 8191. 179. Mahmood I., Razzaq A., Ashraf M., Hafiz I.A., Kaleem Sh., Qayyum 1A. and Ahmad M. (2012a) In vitro selection of tissue culture induced somaclonal variants of wheat for drought tolerance. Journal of Agricultural Research. 50(2):177-188. 180. Mahmood I., Razzaq I.A., Hafiz S., Kaleem A.A., Qayyum A. and Ahmad M. (2012b): Interaction of callus selection media and stress duration for in vitro selection of drought tolerant callus of wheat. African. Journal of Biotechnology. 11: 4000-4006. 181. Maimoona. M. 2020. Impact Of Antioxidant Enzymes And Their Isoforms In Tolerant And Susceptible Wheat (Triticum Aestivum L.) Varieties In Response To Salt Stress. Ihttp://itr.iub.edu.pk:8000/xmlui/handle/123456789/874 182. Malik, K., Birla, D., Yadav, H., Sainger, M., Chaudhary, D., Jaiwal, P.K. 2017. Evaluation of Carbon Sources, Gelling Agents, Growth Hormones and Additives for Efficient Callus Induction and Plant Regeneration in Indian Wheat (Triticum aestivum L.) Genotypes Using Mature Embryos. J Crop Sci Biotech, 3: 185 -192. 183. Maniatis, T, E. Fritsch and J. Sambrook. 1982. Molecular cloning:Laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor/ NY. 184. Mano J.2002. Early events in environmental stresses in plants–induction mechanisms of oxidative stress. In: Inzé D, Montagu MV, editors. Oxidative stress in plant. London: Taylor & Francis.185. Mansour MMF, Ali EF (2017) Evaluation of proline functions in saline conditions. Photochemistry 140:52–68. 186. Mariani L, Ferrante A (2017) Agronomic management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia, and lodging. Horticulture 3:52 187. Massa, D., Mattson, N. S., and Lieth, H. J. (2009). Effects of saline root environment (NaCl) on nitrate and potassium uptake kinetics for rose plants: a Michaels–Minten modeling approach. Plant Soil 318, 101–115. 188. Mbarki, S., Sytar, O., Zivcak, M., Abdelly, C., Cerda, A., and Brestic, M. (2018). Anthocyanin of colored wheat genotypes in specific response to Salt stress. Molecules 23:1518. doi: 10.3390/molecules23071518. 189. Mehdi. S., R. Mohammadi., A.R. Etminan., and L. Shooshtari. (2015). Evaluation of genetic diversity in durum wheat advanced lines. Biological Forum- An International Journal. 7(1):236-240. 190. Mehmood K, Arshad M, Ali Gm, Razzaq A. 2013, Tissue Culture Responses Of Some Wheat (Triticum Aestivum L.) Cultivars Grown In Pakistan. Pak. J. Bot. V 45(SI):545-549. 191. Miroshnichenko, D.N., Filippov, M.V., Dolgov, S.V., 2013. Medium optimization for efficient somatic embryogenesis and in vitro plant regeneration of spring common wheat varieties. Russian Agricultural Sciences 39, 24–28. 192. Mitic, N., Dodig, D., Nikolic, R., Ninkovic, S., Vinterhalter, D. and Vinterhalter, B. 2009. Effects of donor plant environmental conditions on immature embryo cultures derived from worldwide origin wheat genotypes. Russian Journal of Plant Physilogy, 56: 540-545. 193. Mohamed, I. A. A, N. Shalby, C. Bai et al. 2020. “Stomatal and photosynthetic traits are associated with investigating sodium chloride tolerance of Brassica nap us L. cultivars,” Plants, vol. 9, no. 62. 194. Mohamed, M. and A. Tawfik. 2006. Dehydration-induced alterations in growth and osmotic potential of callus from six tepary bean lines varying in drought resistance. Plant Cell Tissue Organ Culture, 87(3): 255-262. 188. Mohammed. A. M, A. O. Alfalahi, A. S. Abed and Z. N. Hashem. 2019. Callus Induction and Plant Regeneration from Immature Embryos of Two Wheat Cultivars (Triticum aestivum L.). Iraqi Journal of Biotechnology, Vol. 18, No. 2, 57-63. 195. Momeni. M. M, M. Kalantar, M. D. Zahedani. 2021. Physiological, biochemical and molecular responses of durum wheat under salt stress. Plant Genetic Resources , Volume 19 , Issue 2 , April 2021 , pp. 93 – 103. 196. Mujeeb-Kazi A, Munns R, Rasheed A, Ogbonnaya FC, Ali N, Hollington P, Dundas I, Saeed N, Wang R, Rengasamy P, Saddiq MS (2019) Breeding strategies for structuring salinity tolerance in wheat. Adv Agron 155:121–187.197. Mujeeb-Kazi A, Munns R, Rasheed A, Ogbonnaya FC, Ali N, Hollington P, Dundas I, Saeed N, Wang R, Rengasamy P, Saddiq MS (2019) Breeding strategies for structuring salinity tolerance in wheat. Adv Agron 155:121–187. 198. Mullis, K., S. Faloona, R. Scharf, O. Saiki, O. Hornand H. Erlich. 1986. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symp,Quantitative Biology, 51: 263-273. 199. Munns, R.; Gilliham, M. 2015. Salinity tolerance of crops-what is the cost? New Phytol. 2015, 208, 668–673. 200. Munns, R.; Tester, M. 2008. Mechanisms of salinity tolerance. In Annual Review of Plant Biology; Annual Reviews: Palo Alto, CA, USA, Volume 59, pp. 651–681. 201. Muñoz-Miranda L.A., Rodríguez-Sahagún A., Hernández G.J.A., Cruz-Martínez V.O., Torres-Morán M.I., Lépiz-Ildefonso R., Aar land R.C. and Castellans-Hernández O.A. (2019): Evaluation of soma clonal and ethyl methane sulfonate-induced genetic variation of mexican oregano (Lippia graveolens H.B.K.). Agronomy: 9, 166. 202. Murashige, Tand F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologiae Plant arum, 15(3): 473-497. 203. Murín, R., Mészáros, K., Nemecek, P., Kuna, R. & Faragó, J. 2012. Regeneration of immature and mature embryos from diverse sets of wheat genotypes using media containing different auxins. Acta Agronomica Hungarica 60(2): 97-108. 204. Murray, M. G and W. F. Thompson. 1980. Rapid isolation of high molecular weight DNA. Nucleic Acids Research, 8: 4321- 4325. 205. Murshed, R., F. Lopez-Lauri, C. Keller, F. Monnet and and H. Sallanon. 2008. Acclimation to drought stress enhances oxidative stress tolerance in Solanum lycopersicum L. fruits, Plant Stress, 2:145–151. 206. Nagy, L.; Kiss, V.; Brumfeld, V.; Osvay, K.; Börzsönyi, Á.; Magyar, M.; Szabõ, T.; Dorogi, M.; Malkin, S. 2015. Thermal effects and structural changes of photosynthetic reaction centers characterized by wide frequency band hydrophone: Effects of carotenoids and terbutryn. Photochem. Photobiol, 91, 1368–1375. 207. Najaphy, A., Parchin, R. A. and Farshadfar, E. 2011. Evaluation of genetic diversity in wheat cultivars and breeding lines using inter simple sequence repeat markers. Biotechnology and Biotechnological Equipment 25 (4): 2634-2638. 208. Natr L, Lawlor DW. 2005. Photosynthetic Plant Productivity. In: Pessarakli M (Eds.). Handbook of Photosynthesis, 2nd edition. Boca Raton: CRC Press. pp. 501-522. 209. Naseer S. and Mahmood T. (2014): Tissue culture and genetic analysis of somaclonal variations of Solanum melongena L. cv. Nirrala. Central European Journal of Biology. 9(12): 1182-1195.210. Nassar, R., Kamel, H. A., Ghoniem, A. E., Alarcón, J. J., Sekara, A., Ulrichs, C., et al. (2020). Physiological and anatomical mechanisms in wheat to cope with salt stress induced by seawater. Plants 9:237. doi: 10.3390/plants9020237 211. Nasution N.H. and Nasution I.W. (2019): The Effect of plant growth regulators on callus induction of Mangosteen (Garcinia mangostana L.). IOP Conf. Ser.: Earth Environment and Science. 305 012049. 212. Nauš, J.; Prokopová, J.; ˇ Rebíˇcek, J.; Špundová, M. 2010. Spad chlorophyll meter reading can be pronouncedly affected by chloroplast movement. Photosynth. Res, 105, 265–271. 213. Navarro-Yepes, J., Burns, M., Anandhan, A., Khalimonchuk, O., Del Razo, L.M., Quintanilla-Vega, B., et al. (2014). Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxidants Redox Signal. 21, 66–85. doi: 10.1089/ars.2014.5837. 214. Nawaz F, Majeed S, Ahmad KS, Hamid A, Shabbier RN, Aqib M, et al. 2019. Use of Osmolytes in improving abiotic stress tolerance to wheat (Triticum aestivum L.). In: Wheat Production in Changing Environments. Singapore: Springer; pp. 497-519. 215. Naz. M, F. Nizamani, G. S. Nizamani, M. R. Nizamani, S. Ahmed, N. Ahmed, S.Rehman, S. A. Soomro. 2022. Callus induction and plant regeneration from immature embryos of spring wheat varieties (Triticum aestivum L.) under different concentrations of growth regulators through tissue culture technique. International Journal of Biology Research. Volume 1; Issue 1; Page No. 28-32. 216. Nazarzadeh, Z., Onsori, H., & Akrami, S. (2020). Genetic Diversity of Bread Wheat (Triticum aestivum L.) Genotypes Using RAPD and ISSR Molecular Markers. 6(1), 69–76. https://doi.org/10.22080/jgr.2020.18262.1172. 217. Negrao S, Schmockel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11. 2018. Nei, M. 1973. Analysis of gen diversity in subdivided populations. Proceedings of the Nation Academy of Science of the USA.70:3321-3323. 218. Neiverth, A., Silva, J.B.D., Schuster, I., Santos, M.F.D., Vendruscolo, E.C.G. 2010. Regeneration of wheat plants from wheat (Triticum aestivum L. cv. CD104) mature embryos. Scientia Agraria 11:101–108. 219. Neelambari C, Mandavia M, Mandavia R, Kumari R (2017) Protectiveeffect of ascorbic acid and gibberellic acid on biochemical param-eters of wheat (Triticum aestivum L.) under salinity stress. J CropSci Biotechnol 6(9):18–26. 220. Nemeskéri E., Neményi A., Bocs A., Pék Z. and Helyes L. (2019): Physiological factors and their relationship with the productivity of processing tomato under different water supplies. Water, 11, 586. 221. Newell, N. Review: Effects of Soil Salinity on Plant Growth. Plant Physiol. 2013, 1, 1–4.222. Nosair. H. R. Genetic diversity studies on seven Egyptian wheat (Triticum aestivum) cultivars using Scot and ISSR polymorphism markers. Taeckholmia Volume 40, pages 143-151. 223. Nounjan, N., Nghia, P. T., and Theerakulpisut, P. (2012). Exogenous proline and Trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J. Plant Physiol.169, 596–604. doi: 10.1016/J.JPLPH.2012.01.004 224. OECD (Organization for Economic Co-operation and Development) & FAO. 2010. Agricultural Outlook 2015–2027- special focus: Middle East and North Africa .Paris and Rome. 225. Örgeç M, Karakaş PF, Şahin G, Ağıl F, Zencirci N (2018) Einkorn (Triticum monococcum ssp. monococcum) in vitro propagation sterilization protocol. Intl J Sec Metab 5:67–74. 226. Örgeç M, Verma SK, Şahin G, Zencirci N, Gürel E (2021) In vitro tissue culture protocol of ancient einkorn (Triticum monococcum ssp. monococcum) wheat via indirect shoot regeneration. Vitr Cell Dev Biol - Plant 57:143–151. 227. Otu, H., Celiktas, V., Duzenli, S., Hossain, A., and El Sabagh, A. (2018). Germination and early seedling growth of five durumwheat cultivars (Triticum durum Desf.) is affected by different levels of salinity. Fresenius Environ. Bull. 27, 7746–7757. 228. Ouzounidou G.; Papadopoulou K.; Asfi M.; Mirtziou I. and Gaitis F. 2013. Efficacy of different chemicals on shelf-life extension of parsley stored at two temperatures. Int. J. Food Sci. Technol. 48:1610–1617. 229. Panta, S., T. Flowers, P. Lane, R. Doyle, G. Haros and S. Shabala. 2014. Halophyte agriculture: Success stories. Environ. Exp. Bot., 107: 71-83. 230. Papry M., Ahsan S.M., Shahriyar S., Sathi M.A., Howlader P., Robbani M., Akram S. and Biswas M.J.H. (2016): In vitro regeneration protocol development via callus formation from leaf explants of tomato (Solanum Lycopersicon Mill.). Tropical Plant Research 3(1): 162–171. 231. Parveen, A., M.H. Saleem, M. Kamran, M.Z. Haider, J.-T. Chen, Z. Malik, M.S. Rana, A. Hassan, G. Hur and M.T. Javed. 2020. Effect of citric acid on growth, eco physiology, chloroplast ultrastructure, and phytoremediation potential of jute (Corchorus capsularis L.) seedlings exposed to copper stress. Biomolecules, 10(4): 592. 232. Pariha, P. et al.2015. Effect of salinity stress on plants and its tolerance strategies: A review. Environmental Science and Pollution Research, 22:4056-4075. 233. Patade V.Y., Bhargava S. and Suprasanna P. (2012): Effects of NaCl and iso-osmotic PEG stress on growth, Osmolytes accumulation and antioxidant defense in cultured sugarcane cells''. Plant Cell Tissue and Organ Culture. 108:279–286. 234. Pehlivan Karakas. F, C. Nildem, K. Ferdi, A.N.Zencirci.2021. Profiles of vitamin B and E in wheat grass and grain of einkorn (Triticum monococcum sppmonococcum), emmer (Triticum dicoccum ssp. dicoccum Schrank.),durum (Triticum durum Desf.), and bread wheat (Triticum aestivum L.) cultivars by LC-ESI-MS/MS analysis. Journal of Cereal Science, Volume 98, March 2021, 103-177 . 235. peleg, Z. , Abbo, S. , & Gopher, A. (2022). When half is more than the whole: Wheat domestication syndrome reconsidered. Evolutionary Applications, 15, 2002–2009. 236. Peleg, Z., T. Fahima, A. B. Korol, S. Abbo, and Y. Saranga. 2011. Genetic analysis of wheat domestication and evolution under domestication. Journal of Experimental Botany 62 (14):5051–61 237. Peng HJ, Sun D, Nevo E (2011) Domestication Evolution, genetics and genomics in wheat. Mol Breed 28:281–301. 238. Pequeno, D.N.L.; Hernandez-Ochoa, I.M.; Reynolds, M.; Sonder, K.; Molero-Milan, A.; Robertson, R.; Lopes, M.d.S.S.; Xiong, W.; Kropff, M.; Asseng, S. 2021. Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environ. Res. Lett, 16, 54070. 239. Per TS, Khan NA, Reddy PS, Masood A, Hasanuzzaman M, Khan MIR, Anjum NA (2017). Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenic. Plant Physiol Biochem 115:126–140. 240. Pereira, A.S., A.O.S. Dorneles, K. Bernardy, V.M. Sasso, D. Bernardy, G. Possebom, L.V. Rossato, V.L. Dressler and L.A. Tabaldi. 2018. Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in pfaffia glomerata (spreng.pe dersen plants by activation antioxidant enzyme system. Envir. Sci. & Pollu. Res., 25(19): 18548-18558. 241. Pessarakli, M. (2014). Handbook of Plant and Crop Stress, 3rd edn. CRC Press, Boca. 242. Petrov VD and Van Breusegem F (2012) Hydrogen peroxide central hub for information flow in plant cells. AoB PLANTS 2012:pls014. 243. Pirasteh-Anosheh H., Ranjbar G., Pakniyat H. 2016. Physiological mechanisms of salt stress tolerance in plants: An overview. In: Mahgoub Azooz M., Ahmad P.(ed.): Plant-Environment Interaction: Responses and Approaches to Mitigate Stress. Chapter8. Pp. 141-160. John Wiley & Sons,Ltd, Jammu and Kashmir. 244. Płazek. A, J. Kos´cielniak, M. Tatrzan´ska, M. Maciejewski , F. Dubert, K. Gondek, J. Bojarczuk. 2013. Investigation of the salt tolerance of new Polish bread and durum wheat cultivars. Acta Physiol Plant, Vol (35), P. 2513–2523. 245. Polash, M. A. S, M. A. Sakil, and M. A. Hossain. 2019. “Plants responses and their physiological and biochemical defense mechanisms against salinity: areview,” Tropical Plant Research,vol. 6, no. 2, pp. 250–274.246. Poustini K., Siosemardeh A. and Ranjbar M. 2007. Proline accumulation as a response to salt stress in 30 Wheat (Triticum aestivum L.) cultivars differing in salt tolerance, Genet. Resource. Crop. Evil. 54(5),P: 925-934. 247. Qadir M, Quillerou E, Nangia V., (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum 38: 282–295. 248. Qin-Mei W. and Li W. (2012): An evolutionary view of plant tissue culture: soma clonal variation and selection. Plant Cell Reports. 31: 1535-1547. 249. Qiu, T.; Jiang, L.; Li, S. 2017. Yang, Y. Small-scale habitat-specific variation and adaptive divergence of photosynthetic pigments in different alkali soils in reed identified by common garden and genetic tests. Front. Plant Sci, 7, 2016. 250. Rady, M.M., Kuşvuran, A., Alharby, H.F., Alzahrani, Y., Kuşvuran, S., 2019. Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the oxidative stress. J. Plant Growth Regul. 38, 449–462. 251. Rahman A, Nahar K, Hasanuzzaman M, Fujita M. 2016. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Frontiers in Plant Science. 7:609. 252. Rahmani, M., Rahimi, M., AbdoliNasab, M. and Maleki, M. 2021. Evaluation of genetic diversity of different bread wheat (Triticum aestivum L.) varieties using molecular markers ISSR and RAPD. Cellular and Molecular Researches (Iranian Journal of Biology) 34 (3): 248-262. 253. Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C. & Job, D. 2012. Seed germination and vigor. Annual Review of Plant Biology 63: 507-533. 254. Rao S. and Jabeen F.T.Z. (2013) In vitro selection and characterization of polyethylene glycol (PEG) tolerant callus lines and regeneration of plantlets from the selected callus lines in sugarcane (Saccharum officinarum L.)''. Physiology and Molecular Biology of Plants 19(2). 261-268. 255. Raza, A., A. Razzaq, S. S. Mehmood, X. Zou, X. Zhang, Y. Lv, and J. Xu. 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 8 (2):34. 256. Raziuddin, J., Z.A. Bakht, M. Swati, F. Shafi, and U.M. Akmal (2010). Effect of cultivars and culture medium on callus formation and plant regeneration from mature embryos of wheat (Triticum aestivum L.). Pak. J. Bot. 42(1): 639- 652. 257. Razzaq H., Sadaqat M.H.T. and Sadia B. (2016): In-vitro selection of sunflower (Helianthus annuus L.) accessions under the polyethylene glycol mediated drought stress conditions. International journal of advances in agricultural and environmental engineering, 3(2): 276-279. 258. Reardon, T.; Echeverria, R.; Berdegué, J.; Minten, B.; Liverpool-Tasie, S.; Tschirley, D.; Zilberman, D. 2019. Rapid transformation of food systems indeveloping regions: Highlighting the role of agricultural research & innovations. Agric. Syst. 172, 47–59. 259. Rodríguez-García. M. F, L. Robles-Yerena, S. Aranda-Ocampo. 2022. Chemical treatment to wheat seed to reduce the incidence of bacteria 260. Roostika I., Khumaida N. and Ardie S.W. (2015): RAPD analysis to detect soma clonal variation of pineapple in vitro cultures during micro propagation BIOTROPIA. Vol. 22 No. 2:109 – 119. 261. Royo, C.; Soriano, J.M.; Alvaro, F. 2017. Wheat: A crop in the bottom of the Mediterranean diet pyramid. In Mediterranean Identities-Environment, Society, Culture; Fuerst-Bjelis, B., Ed.; Intchopen: London, UK, pp. 381–399. 262. Rzani, A., & Ashraf, M. (2017). Cultivated ancient wheat’s (Triticum spp.): A potential source of health-beneficial food products. Comparative Review of Food Science and Food Safety, 16, 477-488. 263. Saha S, Islam Z, Islam S, Hassan MF, Hossain MS, Islam SMS. (2017). Enhancement of somatic embryogenesis by mature and immature seeds in wheat (Triticum aestivum L). J Biol Life Sci 8:20. https:// doi. org/ 10. 5296/ jbls. v8i2. 11529. 264. Saha S, Siddique AB, Bhattacharjee B, Hossain MS, Islam SMS. 2015. Enhanced callus induction and regeneration by PGRs in Bangladeshi wheat (Triticum aestivum L.) cultivars. SKUAST J Res. 17:29–36. 265. Sahara A., Reflini, Utomo C. and Liwang T (2019): Early detection of somaclonal variation in oil palm callus culture through cytological and SDS-PAGE protein analysis. The 2nd International Conference on Natural Resources and Life Sciences (NRLS) IOP Conf. Ser.: Earth Environ. Sci. 293 012005. 266. Şahin Y, Yıldırım AB, Yücesan B, Zencirci N, Bayram MS, Gürel E (2017) Phytochemical contents and antioxidant activities of some bread (Triticum aestivum L.), durum (Triticum turgidum ssp. durum Desf), and hulled einkorn (Triticum monococcum ssp. monococcum) wheats. Prog Nutr 19(4):450–459. 267. Said E.M., Mahmoud R.A., Al-Akshar R. and Safwat G. (2015): Drought stress tolerance and enhancement of banana plantlets in-vitro. Austin journal of biotechnology and bioengineering, 2(2): 1040-1046. 268. Salami, A., Pahlevani, M., Zenalinezhad, K. and Esmaeilzadeh Moghaddam, M. 2018. Genetic variation pattern of Iranian wheat landraces based on ISSR molecular markers and morphological traits. Journal of Plant Genetic Researches 5 (1): 87-100. (In Persian with English Abstract). 269. Saleh, O. M., Hamiedeldin, N., Khafaga, A. F., and Shoaib, R. M. (2017). Molecular, Morphological and Anatomical Characterization for Some Egyptian Durum Wheat. Life Sci J;14(2):91-104. 270. Sar- Saeidi,S., H. Abbaspour, H. Afshari and S. R. Yaghoobi. 2013. Effects of ascorbic acid and gibberellin GA3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiologiae Plant arum, 35: 667-677271. Saravanan S., Sarvesan R. and Vinod M.S. (2011): Identification of DNA elements in somaclonal variants of Rauvolfia serpentine (L.) arising from indirect organogenesis as evaluated by ISSR analysis. Indian Journal of Science and Technology. 4: 1241-1245. 272. Saravani, S., Sabouri, H., Taliei, F., Biabani, A., & Karizaki, A. R. (n.d.) (2019). Genetic Diversity of Wheat Genotypes based on Resistance to Powdery Mildew, Grain Yield, Yield Components and Molecular Markers. . 1128.1134. 273. Schonfeld. M. A, R. C. Johnson, B. F. Carver, and D. W. Morn hinweg . 1988. “Water relations in winter wheat as drought resistance indicators,” Crop Science, vol. 28, no. 3, pp. 526–531, 1988. 274. Schwab J., Bassam R. and Digel L. (2016). Plant cells viability measurement: spectrofluorometric Approach. 1st YRA MedTech Symosium, Young Researchers Academy MedTech in NRW University of Duisburg-Essen. Duisburg, Germany. 275. Sen, A. and S. Alikamanoglu. 2011. Effect of salt stress on growth parameters and antioxidant enzymes of different wheat (Triticum aestivum L.) varieties on in vitro tissue culture, Fresenius Environmental Bulletin, 20: 489-495. 276. Senhaji C, Ahansal K, Abdel wahed R, Diria G, Gaboun F, Udupa SM, Douira A, Iraqi D (2021) Development of an efficient regeneration system for mature bombarded calli of Moroccan durum wheat varieties. Aust J Crop Sci 15(3):431-437. 277. Shahid, S. A., Zaman, M., and Heng, L. (2018). “Introduction to soil salinity, sodicity and diagnostics techniques,” in Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, eds M. Zaman, S. A. Shahid, and L. Heng (Cham: Springer), 1-42. 278. Sharma, P., Jha, A. B., Dubey, R. S., and Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and ant oxidative defense mechanism in plants under stressful conditions. J. Bot. 2012. doi: 10.1155/2012/217037. 279. Sharma, S.,Villamor, J.G., and Verslues, P.E. 2011. Essential role of tissue- specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol. 157, 292–304. 280. Shaygan. N, A. Etminan, I. Majidi Hervan, R. Azizinezhad & R. Mohammadi.2020. The study of genetic diversity in a minicore collection of durum wheat genotypes using agro-morphological traits and molecular markers. Springer Nature, Volume 49, pages 141–147. 281. Sheng. H, J. Sheng, Y. Liu, X. Wang, Y. Wang, H. Kang, X. Fan. 2020. Differential Responses of Two Wheat Varieties Differing in Salt Tolerance to the Combined Stress of Mn and Salinity. Journal of Plant Growth Regulation volume 39, pages 795–808 .282. Shrivastava, P. And Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci., 22 (2): 123- 131. 283. Sherkar H.D. and Chavan A.M. (2014): Studies on callus induction and shoot regeneration in tomato. Science Research Reporter. 4(1): 89-93. 284. Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M. and Muricho, G. 2013. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security 5: 291–317. 285. Shrivastava, P. And Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci., 22 (2): 123- 131. 286. Siddiqui, M. H., Iqbal, M. A., Wajid, N., Imtiaz, H., and Khaliq, A. (2019). Bio economic viability of rain fed wheat (Triticum aestivum L.) cultivars under integrated fertilization regimes in Pakistan. Custos e Agronegocio 15, 81–96. 287. Silva D.R.F. and Menéndez-Yuffá A. (2006): Viability in protoplasts and cell suspensions of Coffea arabica cv. Catimor. Electronic Journal of Biotechnology Vol.9 No.5. pp.593-597. 288. Simpson, G. (1968). Association between Grain Yield Per Plant and Photosynthetic Area above the Flag-Leaf Node in Wheat. Canadian Journal of Plant Science, 48, 253-260. 290. Singh, R. P., Jha, P., and Jha, P. N. (2015). The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J. Plant Physiol. 184, 57–67. 291. Slama, S., Bouchereau, A., Flowers, T., Abdelly, C., and Savour , A. (2015). Diversity, distribution and roles of osmo protective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433–447. 292. Sneath, P. and R. Sokal. (1973). Numerical Taxonomy. San Francisco: W. H. Freeman. 293. Soni S, Kumar A, Sehrawat N, Lata C, Kumar A, Kumar N, et al. 2021. Variability of durum wheat genotypes in terms of physio-biochemical traits against salinity stress. Cereal Research Communications. 49:45-54. 294. Stefanov M, Yotsova E, Rashkov G, Ivanova K, Markovska Y, Apostolova EL (2016) Effects of salinity on the photosynthetic apparatus of two Paulownia lines. Plant Physiol Biochem 101:54–59. 295. STOEVA, N. and KAYMAKANOVA, M. 2008. Effect of salt stress on the growth and photosynthesis rate of bean plants (Phaseolus vulgaris L.). Journal of Central European Agriculture, 9(3), 385-392. 296. Storey R, Walker RR. 1999. Citrus and salinity. Sci. Hortic. 78:39–81. 297. Sunaryo W., Darnaningsih D. and Nurhasanah N (2019): Selection and regeneration of purple sweet potato calli against drought stress simulated by polyethylene glycol. F1000Research. 8:10.298. Suzuki, K., Yamaji, N., Costa, A., Okuma, E., Kobayashi, N. I., Kashiwagi, T.,et al. (2016). OsHKT1; 4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biol. 16:22. 299. Sytar O, Brestic M, Zivcak M, Olsovska K, Kovar M, Shao H, He X. 2017. Applying hyper spectral imaging to explore natural plant diversity towards improving salt stress tolerance. Sci Total Environ. 578:90–9. 300. Sytar, O., Mbarki, S., Zivcak, M., and Brestic, M. (2018). “The involvement of different secondary metabolites in salinity tolerance of crops,” in Salinity Responses and Tolerance in Plants, eds V. Kumar, S. Wani, P. Suprasanna, and L. S. Tran. Vol. 2. (Cham: Springer), 21–48. 301. Szabados, L., and Savour , A. (2010). Proline: a multifunctional amino acid. Trends Plant Sci. 15, 89–97. doi: 10.1016/J.TPLANTS.2009.11.009. 302. Taïbi. K, F. Taïbi a, L. Ait, A, A. Ennajah, M. Belkhodja , J. MiguelMulet (2016 ) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany 105 (2016) 306–312. 303. Talaat NB and Shawky BT (2014). Modulation of the ROS scavenging system in salt-stressed wheat plants inoculated with arbuscular mycorrhizal fungi. J Plant Nutr Soil Sci., 177:199-207. 304. Tamimi. S. M, And H. Othman. 2021. Callus Induction and Regeneration from Germinating Mature Embryos of Wheat (Triticum aestivum L.). Sains Malaysian 50(4): 889-896. 305. Tardieu F Granier C Muller B . 2011. Water deficit and growth. Coordinating processes without an orchestrator?Current Opinion in Plant Biology14, 283–289. 305. Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl− ions on barley growth under salinity stress. J Exp Bot 62:2189–220 306. Terletskaya, N. and K. Nina.2010. Tissue culture in vitro as a model system for studying the effects of abiotic stresses on different species of wheat. Advances in Environmental Technology and Biotechnology, 1:102-107. 307. Tian F, Wang W, Liang C, Wang X, Wang G, Wang W. 2017. Over accumulation of glycine betaine makes the function of the thylakoid membrane better in wheat under salt stress. The Crop Journal. 5(1):73-82. 308. Tian, X.Y.; He, M.R.; Wang, Z.L.; Zhang, J.W.; Song, Y.L.; He, Z.L.; Dong, Y.J. 2015. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regul. 77, 343–356. 309. Turfan. N, T. Sarıyıldız, E. Mutlu. 2019. Variation in Chemical Constituents of Siyez Wheat (Triticum monococcum L.) in Response to Some Abiotic StressFactors. Turkish Journal of Agriculture - Food Science and Technology (TURJAF). Vol 7, No 4, pages 598–605. 310. USDA-ARS. 2008. Research Databases. Bibliography on Salt Tolerance. George E. Brown, Jr. Salinity Lab. US Dep. Agric., Agric. Res. Serv. Riverside, CA. http://www. arsusda. 311. United Nations, Department of Economic and Social Affairs, Population Division (UNDESAPD). 2015. World Urbanization Prospects: The 2014 Revision, (ST/ESA/SER.A/366). 312. Vahdani Kia. F. S, H. S. lahiji, M. zahravi , M. Mohsenzadeh. 2021. Evaluating genetic diversity of some wheat genotypes using SSR and ISSR molecular markers. University of Guilan Faculty of Agricultural Sciences. Vol. 11, No. 1, Spring 2021 (43-54). 313. Velicevici Giancarla1, Madoşă E., Ciulca S., Camen D., Ciulca Adriana, (2018). Petolescu Cerasela, Malaescu Michaela, Nistor Eleonora, Beinsan Carmen. Analysis of genetic diversity in barley cultivars using ISSR markers, Journal of Horticulture Forestry and Biotechnology. Volume 22(2), 19- 25. 314. VelikovaV, Yordanov I, Edreva A 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151: 5966. 315. Verma SK, Das AK, Cingoz GS, Uslu E, Gurel E (2016) Influence of nutrient media on callus induction, somatic embryogenesis and plant regeneration in selected Turkish crocus species. Biotechnol Reports 10:66–74. 316. Vosough A., E. Farshadfar., and A. Etminan. (2013). Assessment of Genetic Diversity in some Iranian Landraces of Bread wheat (Triticum aestivum) using Inter Simple Sequence Reoeat Markers. Advances in Environment Biology.7(14):4719-4723. 317. Wakeel, A., Farooq, M., Qadir, M., and Schubert, S. (2011). Potassium substitution by sodium in plants. Critic. Rev. Plant Sci. 30, 401–413. 318. Wayase U.R. and Shitole M.G. (2014): Effect of plant growth regulators on organogenesis in tomato (Lycopersicon esculentum Mill.) cv. Dhanashri. International Journal of Pure and Applied Sciences and Technology. 2: 65–71. 319. Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S, Iannuzzi F, Mirto A, et al. 2017. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiologiae Plant arum. 159:290-312. 320. Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One 8:e55431. 321. Wu, H., Doherty, A. and Jones, H.D. 2009. Agrobacterium-mediated transformation of bread and durum wheat using freshly isolated immature embryos. Methods in Molecular Biology, 478: 93-103.322. Xhulaj. D. 2019. Effect Of Plant Growth Regulators On In Vitro Plant Regeneration Of Wheat (Triticum Aestivum L.) From Embryo Explants. The J. Anim. Plant Sci. 29(6), p. 1-6. 323. Xu Z, Wang C, Xue F, Zhang H, Ji W. 2015. Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Plant Physiology and Biochemistry. 96:356-363. 324. Yadav. V, P. Kumar and M. Goyal. (2018). Evaluation of genetic diversity in drought tolerant and sensitive varieties of wheat using ISSR markers. Electronic Journal of Plant Breeding, 9(1), 146-153. 325. Yaghotipoor, A., Farshadfar, E. and Saeidi, M. 2019. Association analysis for drought tolerance indices in bread wheat using ISSR markers. 326. Yaman, H. M., Ordu, B., Zencirci, N., &Kan, M., 2019. Coupling socioeconomic factors and cultural practices in production of einkorn and emmer wheat species in Turkey. Environment, Development and Sustainability, 1-18. 327. Yan K., Shao H., Shao, C., Chen P, Zhao S, Brestic M, Chen X. 2013. Physiological adaptive mechanisms of plants grown in saline soil and implications forsustainable saline agriculture in coastal zone. Acta Physiol Plant.; (10):2867 35–78. 328. Yang, S., Xu, K., Wang, Y., Bu, B., Huang, W., Sun, F., Liu, S. & Xi, Y. 2015. Analysis of biochemical and physiological changes in wheat tissue culture using different germplasms and explant types. Acta Physiologiae Plant arum 37: 120. 329. Yi, Q.; Jiapaer, G.; Chen, J.; Bao, A.; Wang, F. 2014. Different units of measurement of carotenoids estimation in cotton using hyper spectral indices and partial least square regression. ISPRS J. Photogram. Remote Sens. 91, 72–84. 330. Yolmeh M. and Khomeir M. (2017): Effect of mutagenesis treatment on antimicrobial and antioxidant activities of pigments extracted from Rhodotorula glutinis. Biocatal. Agric. Biotechnol. 10, 285–290. 331. Yu, Y., Wang, J., Zhu, M.L. and Wei, Z.M. 2008. Optimization of mature embryo-based high frequency callus induction and plant regeneration from elite wheat cultivars grown in China. Plant Breeding, 127: 249-255. 332. Zafar, S., M.Y. Ashraf, M. Niaz, A. Kausar and J. Hussain. 2015. Evaluation of wheat genotypes for salinity tolerance using physiological indices as screening tool. Pak. J. Bot, 47(2): 397-405. 333. Zafar, S., Z. Hasnain, S. Anwar, S. Perveen, N. Iqbal, A. Noman and M. Ali. 2019. Influence of melatonin on antioxidant defense system and yield of wheat (Triticum aestivum l.) genotypes under saline condition. Pak. J. Bot, 51(6): 1987-1994. 334. Zaid. A, K. Marina, B. Anatoly. 2018. The effect of pre-sowing seed treatment on seedlings growth rate and their excretory activity. International Journal of Agriculture, Environment and Biotechnology. Volume : 11, Issue : 3 Page: 589 – 599335. Zakar, T.; Laczko-Dobos, H.; Toth, T.N.; Gombos, Z. 2015. Carotenoids assist in cyanobacterial photosystem II assembly and function. Front. Plant Sci. 7, 295. 336. Zamanianfard, Z., Etminan, A., Mohammadi, R. and Shooshtari, L. (2015). Evaluation of Molecular Diversity of durum wheat genotypes using ISSR markers. In Biological Forum, 7(1): 214-218. 337. Zee shan. M, M. Lu, S. Sehar, P. Holford and F. Wu. 2020. Comparison of Biochemical, Anatomical, Morphological, and Physiological Responses to Salinity Stress in Wheat and Barley Genotypes Deferring in Salinity Tolerance. Agronomy, Vol (10), P. 127. 338. Zhu, Y., and Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agron. Sustain. Dev. 34, 455–472. 339. Zulfiqar F., Akram N. A., Ashraf M. (2019). Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 251, 3.
类型
Thesis

2024-01-16
EndNote