Large eddy simulation of turbulent flow structure in a rectangular embayment zone with different population densities of vegetation
2019
Xiang, Ke | Yang, Zhonghua | Huai, Wenxin | Ding, Ran
Dead-water zones (DWZs) in natural open channels, formed by embayment or consecutive groins, can provide favorable growth conditions for aquatic organisms. Although flow hydrodynamics in side-cavity zones have been well studied, the impact of vegetation on recirculating flow is rarely considered. This study adopts large eddy simulation (LES) to examine the flow field in a rectangular embayment zone with different population densities of vegetation. The numerical model is validated by mean streamwise velocity data collected near mid-depth in the physical experiment. Vegetation rearranges the circulation structure in the DWZ and weakens the velocity and turbulent kinetic energy. This negative effect increases with increasing population density. With the development of the shedding vortex induced in the front edge of the channel–embayment interface, the large-scale coherent structure forms in the mixing layer and is hardly affected by the variation of population density. As the population density increases, the mean retention time first decreases and then increases as a result of the combined action of three factors, namely, the large-scale coherent structure, the plant-induced Karman vortex street, and the blocking effect of dense vegetation.
显示更多 [+] 显示较少 [-]