Protective mechanism of selenium on mercuric chloride-induced testis injury in chicken via p38 MAPK/ATF2/iNOS signaling pathway
2022
Chen, Xue-Wei | Chu, Jia-Hong | Li, Lan-Xin | Gao, Pei-Chao | Wang, Zhen-Yong | Fan, Rui-Feng
Mercuric chloride (HgCl₂) is a well-known toxic heavy metal contaminant, which causes male reproductive function defects. Selenium (Se) has been recognized as an effective antioxidant against heavy metals-induced male reproductive toxicity. The aim of present study was to explore the potentially protective mechanism of Se on HgCl₂-induced testis injury in chicken. Firstly, the results showed that Se mitigated HgCl₂-induced testicular injury through increasing the blood-testis barrier (BTB) cell-junction proteins expression of occludin, zonula occludens-1 (ZO-1), connexin 43 (Cx43), and N-cadherin. Secondly, Se alleviated HgCl₂-induced oxidative stress through decreasing the malondialdehyde (MDA) content and increasing the superoxidase dismutase (SOD), glutathione peroxidase (GSH-Px) activities as well as the total antioxidant capacity (T-AOC) level. Thirdly, Se inhibited the activation of p38 MAPK signaling through decreasing the proteins expression of phosphorylated-p38 (p-p38) and phosphorylated-ATF2 (p-ATF2), and alleviated inflammation response through decreasing the proteins expression of inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NF-κB), tissue necrosis factor-alpha (TNF-α), and cyclooxygenase 2 (COX2). Collectively, these results demonstrated that Se effectively alleviated HgCl₂-induced testes injury via improving antioxidant capacity to reduce inflammation mediated by p38 MAPK/ATF2/iNOS signaling pathway in chicken. Our data shed a new light on potential mechanisms of Se antagonized HgCl₂-induced male reproductive toxicity.
显示更多 [+] 显示较少 [-]