Accumulation and distribution of organophosphate flame retardants (PFRs) and their di-alkyl phosphates (DAPs) metabolites in different freshwater fish from locations around Beijing, China
2017
Hou, Rui | Liu, Cao | Gao, Xiaozhong | Xu, Yiping | Zha, Jinmiao | Wang, Zijian
Organophosphate flame retardants (PFRs) can be rapidly metabolized in the body, and recent studies have shown that the di-alkyl phosphates (DAPs) are important metabolites. The accumulation and distribution of 8 PFRs and their 4 DAPs metabolites were first investigated in whole-body samples and various tissues of three freshwater fish species (topmouth gudgeon, crucian carp and loach) with different feeding habits from locations around Beijing, China. Concentrations of ΣPFRs in whole-body samples across all sampling locations ranged from 264.7 to 1973 ng g−1 lipid weight (lw), while all the paired DAP metabolites were detected in the total range from 35.3 to 510 ng g−1 lw. The calculated log bioconcentration factors (BCFs) of PFRs in whole fish were correlated with their log KOW (P < 0.05). The metabolite/parent ratios (MPRs) of ΣDAPs were calculated and ranged from 0.10 to 1.12 in whole-fish of all species. The MPRs of BBOEP/TBOEP were the highest. With respect to their distribution in different tissues, both the parent PFRs and metabolites were found at relatively higher levels in the liver than in other tissues (muscle, intestine, kidney and ovary), which was markedly different from those observed in avian species in previous studies. The accumulation of PFRs and DAPs in various tissues was not significantly correlated with the lipid content. The highest PFRs level in the liver may be related to the active hepatic accumulation processes. Meanwhile, the MPRs for all 4 pairs were the highest in the kidney relative to the other tissues. To the best of our knowledge, this is the first study of DAPs in the wild animals, and our study may improve the understanding of the accumulation and metabolism of PFRs in the body.
显示更多 [+] 显示较少 [-]