Effective treatment of levofloxacin wastewater by an electro-Fenton process with hydrothermal-activated graphite felt as cathode
2020
Liu, Jia-Ming | Ji, Zhi-Yong | Shi, Ya-Bin | Yuan, Peng | Guo, Xiao-Fu | Zhao, Li-Ming | Li, Shuming | Li, Hong | Yuan, Jun-Sheng
The performance of the cathode significantly affects the ability of the electro-Fenton (EF) process to degrade chemicals. In this study, a simple method to modify the graphite felt (GF) cathode was proposed, i.e. oxidizing GF by hydrothermal treatment in nitric acid. The surface physical and electrochemical properties of modified graphite felt were characterized by several techniques: scanning electron microscope (SEM), water contact angle, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and linear scanning voltammetry (LSV). Compared with an unmodified GF (GF-0), the oxygen reduction reaction (ORR) activity of a modified GF was significantly improved due to the introduction of more oxygen-containing functional groups (OGs). Furthermore, the results showed that GF was optimally modified after 9 h (GF-9) of treatment. As an example, the H₂O₂ generation by GF-9 was 2.26 times higher than that of GF-0. After optimizing the process parameters, which include the initial Fe²⁺ concentration and current density, the apparent degradation rate constant of levofloxacin (LEV) could reach as high as 0.40 min⁻¹. Moreover, the total organic carbon (TOC) removal rate and mineralization current efficiency (MCE) of the modified cathode were much higher than that of the GF-0. Conclusively, GF-9 is a promising cathode for the future development in organic pollutant removal via EF.
显示更多 [+] 显示较少 [-]