Sodium Persulfate Oxidation for the Remediation of Chlorinated Solvents (USEPA Superfund Innovative Technology Evaluation Program)
2006
Dahmani, M Amine | Huang, Kunchang | Hoag, George E
This study has been conducted at the University of Connecticut (UCONN) in connection with the USEPA Superfund Innovative Technology Evaluation (SITE) program to evaluate a chemical oxidation technology (sodium persulfate) developed at UCONN. A protocol to assess the efficacy of oxidation technologies has been used. This protocol, which consists of obtaining data from a treatability study, tested two in-situ chemical oxidation technologies that can be used on soil and groundwater at a site in Vernon, Connecticut. Based on the treatability report results and additional field data collected at the site, the design for the field implementation of the chemical oxidation remediation was completed. The results indicate that both sodium persulfate and potassium permanganate were able to effectively degrade the target VOCs (i.e., PCE, TCE and cis-DCE) in groundwater and soil-groundwater matrices. In the sodium persulfate tests (120 hrs), the extent of destruction of target VOCs was 74% for PCE, 86% for TCE and 84% for cis-DCE by Na₂S₂O₈ alone and 68% for PCE, 76% for TCE, and 69% for cis-DCE by Fe(II)-catalyzed Na₂S₂O₈. The results demonstrate the sodium persulfate's ability to degrade PCE, TCE and cis-DCE. It is expected that given sufficient dose and treatment time, a higher destruction rate of the dissolved phase contamination can be achieved. The data also indicates that the catalytic effect of the iron chelate on persulfate chemistry was much less pronounced in the soil-groundwater matrix. This indicates an interaction between the iron chelate solution and the soil, which may have resulted in a lower availability of the chelated iron for catalysis. The study showed that the remediation of the VOCs-contaminated soil and groundwater by in-situ chemical oxidation using sodium persulfate is feasible at the Roosevelt Mills site. As a result, the USEPA SITE program will evaluate this technology at this site.
显示更多 [+] 显示较少 [-]