Physiology behavior of grasses under three moisture levels in screenhouse
2014
Atencio, Liliana M. | Tapia, Jose J. | Mejía, Sergio L. | Cadena, Jorge
The present study aimed to evaluate the effect of moisture level on the physiological behavior of different forage grasses. The experiment was conducted in screenhouse at the Center for Research Turipaná of Corpoica, (Cereté, Córdoba). Was used a design randomized complete block with 14 genotypes, and three (3) replications. Three moisture regimes were used in the manner of locations within the same screenhouse. Among the variables studied were: net photosynthesis, transpiration, stomatal conductance, leaf water potential, leaf dry mass, leaf area, among others. Only the variables leaf area and leaf water potential showed significant interactions between genotype and environment of moisture, while the other variables, were most affected by the main factors(p<0.05). Genotypes Bisset, Strikcland and Colosuana had an interaction for leaf area, showing the highest value at high and medium moisture. At low humidity, the 14 forage grasses had more negative leaf water potential. Low level moisture had the lowest values of stomatal conductance and transpiration and lower dry matter accumulation in all organs, mainly the leaves. BR02/1752 had the highest dry matter accumulation in leaves (32.67 gplant-1) followed by CIAT16051 (27.78 gplant-1). It is concluded that the physiological behavior of pastures is determined by genetic characteristics and moisture regime, not by their interaction.> <0.05). Genotypes Bisset, Strikcland and Colosuana had an interaction for leaf area, showing the highest value at high and medium moisture. At low humidity, the 14 forage grasses had more negative leaf water potential. Low level moisture had the lowest values of stomatal conductance and transpiration and lower dry matter accumulation in all organs, mainly the leaves. BR02/1752 had the highest dry matter accumulation in leaves (32.67 gplant-1) followed by CIAT16051 (27.78 gplant-1). It is concluded that the physiological behavior of pastures is determined by genetic characteristics and moisture regime, not by their interaction.
显示更多 [+] 显示较少 [-]