Effects of surfactant on the degradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by nanoscale Ag/Fe particles: Kinetics, mechanisms and intermediates
2019
Zheng, Zhiqiang | Lu, Guining | Wang, Rui | Huang, Kaibo | Tao, Xueqin | Yang, Yulu | Zou, Mengyao | Xie, Yingying | Yin, Hua | Shi, Zhenqing | Dang, Zhi
Surfactants are known to enhance the degradation of halogenated organics by nanoscale zerovalent iron (n-ZVI) or n-ZVI-based bimetallic particles, but the mechanism of the promotion is not well understood. In this study, we used nanoscale Ag/Fe particles (n-Ag/Fe) to degrade 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in different surfactant solutions. The results show that the nonionic surfactant TX-100 had the best promoting effect, which might be attributed to the decrease in particle agglomeration and improvement of mass transfer efficiency after the adsorption of TX-100 on n-Ag/Fe. The distribution analysis of BDE-47 in solid and liquid phases indicates that when the concentration of TX-100 in aqueous solution was above critical micelle concentration, BDE-47 started to dissolve in the liquid phase. Thus, TX-100 micelles can enhance the mass transfer efficiency of BDE-47. However, a too high concentration of TX-100 (above 1.0 mM) would influence the promotion effect of BDE-47 degration, which might be attributed to the excessive and thicker micelles of TX-100 hindering the contact between BDE-47 and n-Ag/Fe. We also studied the degradation pathway of BDE-47 and its products, and found that surfactants did not change the degradation pathway of BDE-47.
显示更多 [+] 显示较少 [-]