Improved strength and durability of concrete through metabolic activity of ureolytic bacteria
2018
Alonso, Maria Jose Castro | Ortiz, Carlos Eloir Lopez | Perez, Sixto Omar Garcia | Narayanasamy, Rajeswari | Fajardo San Miguel, Gerardo del Jesús | Hernández, Héctor Herrera | Balagurusamy, Nagamany
In recent years, biomineralization process is being employed in development of bioconcrete, which is emerging as a sustainable method to enhance the durability of concrete by way of increasing compressive strength and reducing the chloride permeability. In this study, different bacterial strains isolated from the soils of the Laguna Region of Mexico were selected for further study. ACRN5 strain demonstrated higher urease activity than other strains, and the optimum substrate concentration, pH, and temperature were 120 mM, pH 8, and 25 °C, respectively. Further, Km and Vmax of urease activity of ACRN5 were 21.38 mM and 0.212 mM min⁻¹, respectively. It was observed that addition of ACRN5 at 10⁵ cells ml⁻¹ to cement-water mixture significantly increased (14.94%) in compressive strength after 36 days of curing and reduced chloride penetration. Deposition of calcite in bio-mortars was observed in scanning electron microscopy and energy dispersive X-ray diffraction spectrometry analyses. Results of this study demonstrated the role of microbially induced calcium carbonate precipitation in improving the physico-mechanical properties of bio-mortars.
显示更多 [+] 显示较少 [-]