Pre-pregnancy exposure to fine particulate matter (PM2.5) increases reactive oxygen species production in oocytes and decrease litter size and weight in mice
2021
Guo, Yi | Cao, Zhijuan | Jiao, Xianting | Bai, Dandan | Zhang, Yalin | Hua, Jing | Liu, Wenqiang | Teng, Xiaoming
Exposure of females to fine particulate matter ≤2.5 μm in diameter (PM2.5) prior to pregnancy could produce adverse impact on fertility and enhances susceptibility of the offspring to a variety of diseases. In the current study, female C57BL/6 mice (6 weeks of age) were exposed to either concentrated PM2.5 or filtered air (average PM2.5 concentration: 115.60 ± 7.77 vs. 14.07 ± 0.38 μg/m⁻³) using a whole-body exposure device for 12 weeks. Briefly, PM2.5 exposure decreased anti-Müllerian hormone level (613.40 ± 17.36 vs 759.30 ± 21.90 pg mL⁻¹, P<0.01) and increased reactive oxygen species (ROS) level (45.39 ± 0.82 vs 24.20 ± 0.85 arbitrary unit in fluorescence assay, P<0.01) in oocytes. The exposure increased oocyte degeneration rate (21.5% vs 5.1%, respectively (P<0.01) and decreased the 2-cell formation rate (71.9% vs 86.0%, P < 0.01). Transcriptome profiling using RNA sequencing showed wide spectrum of abnormal expression of genes, particularly those involved in regulating the mitochondrial respiratory complex in oocytes and metabolic processes in blastocysts. The exposure decreased litter size (6 ± 0.37 vs 7 ± 0.26, P<0.05) and weight (1.18 ± 0.02 vs 1.27 ± 0.02 g, P<0.01). In summary, PM2.5 exposure decreased female fertility, possibly through increased ROS production in oocytes and metabolic disturbances in developing embryos. The cause-effect relationship, however, requires further investigation.
显示更多 [+] 显示较少 [-]