Fine particles and pyrogenic carbon fractions regulate PAH partitioning and burial in a eutrophic shallow lake
2022
Ya, Miaolei | Wu, Yuling | Wang, Xinhong | Wei, Hengchen
Aquatic particles and organic carbon (OC) regulate the occurrence and transport of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) in water-suspended particle-sediment interfaces. Conventional studies on the mechanisms regulating the relationships between PAHs and total particles/OC have ignored micro-scale regulatory factors such as particle size and OC composition. Field research in the eutrophic shallow Lake Taihu, China, revealed that the fine particle fractions 2.7–10 μm in diameter had stronger PAH adsorption capacity and significantly regulated PAH particle size distribution and water-particle partitioning. Selective PAH biodegradation by planktonic microorganisms probably significantly weakened the capacity of the coarse fractions to regulate PAHs. OC fragments at different temperature gradients had markedly different influences on the particle size distribution of PAHs. High-temperature pyrogenic OC fractions (part of black carbon) were the principal OC regulatory factors for medium-to high-molecular-weight PAHs. However, the OC fragments did not directly affect the particle distribution of low-molecular-weight PAHs. During particle deposition and burial, microbial PAH utilization and efficiency probably regulated the burial potential of various hydrophobic PAH species. Biodegradation of relatively less hydrophobic PAHs with octanol-water partition coefficients (log Kₒw) < 5.8 showed an increasing trend with decreasing PAH hydrophobicity. Biological pump action of the relatively higher hydrophobic PAH species (log Kₒw > 5.8) showed a decreasing trend with increasing PAH hydrophobicity. The discoveries of the present work further clarified the mechanisms of PAH partitioning and burial in a eutrophic shallow lake and collectively provides a valuable reference for modeling the transport and dispersal mechanisms of hydrophobic, particle-bound organic contaminants in other aquatic ecosystems.
显示更多 [+] 显示较少 [-]