Growth and photosynthetic responses to ozone of Siebold's beech seedlings grown under elevated CO2 and soil nitrogen supply
2022
Watanabe, Makoto | Li, Jing | Matsumoto, Misako | Aoki, Takuro | Ariura, Ryo | Fuse, Tsuyoshi | Zhang, Yazhuo | Kinose, Yoshiyuki | Yamaguchi, Masahiro | Izuta, Takeshi
Ozone (O₃) is a phytotoxic air pollutant, the adverse effects of which on growth and photosynthesis are modified by other environmental factors. In this study, we examined the combined effects of O₃, elevated CO₂, and soil nitrogen supply on Siebold's beech seedlings. Seedlings were grown under combinations of two levels of O₃ (low and two times ambient O₃ concentration), two levels of CO₂ (ambient and 700 ppm), and three levels of soil nitrogen supply (0, 50, and 100 kg N ha⁻¹ year⁻¹) during two growing seasons (2019 and 2020), with leaf photosynthetic traits being determined during the second season. We found that elevated CO₂ ameliorated O₃-induced reductions in photosynthetic activity, whereas the negative effects of O₃ on photosynthetic traits were enhanced by soil nitrogen supply. We observed three-factor interactions in photosynthetic traits, with the ameliorative effects of elevated CO₂ on O₃-induced reductions in the maximum rate of carboxylation being more pronounced under high than under low soil nitrogen conditions in July. In contrast, elevated CO₂-induced amelioration of the effects of O₃ on stomatal function-related traits was more pronounced under low soil nitrogen conditions. Although we observed several two- or three-factor interactions of gas and soil treatments with respect to leaf photosynthetic traits, the shoot to root dry mass (S/R) ratio was the only parameter for which a significant interaction was detected among seedling growth parameters. O₃ caused a significant increase in S/R under ambient CO₂ conditions, whereas no similar effects were observed under elevated CO₂ conditions. Collectively, our findings reveal the complex interactive effects of elevated CO₂ and soil nitrogen supply on the detrimental effects of O₃ on leaf photosynthetic traits, and highlight the importance of taking into consideration differences between the responses of CO₂ uptake and growth to these three environmental factors.
显示更多 [+] 显示较少 [-]