Toward a long-term monitoring program for seawater plastic pollution in the north Pacific Ocean: Review and global comparison
2022
Shim, Won Joon | Kim, Seung-Kyu | Lee, Jongsu | Eo, Soeun | Kim, Ji-Su | Sun, Chengjun
Through a literature survey and meta-data analysis, monitoring methods and contamination levels of marine micro- and macroplastics in seawater were compared between the North Pacific and the world's other ocean basins. The minimum cut-off size in sampling and/or analysis of microplastics was crucial to the comparison of monitoring data. The North Pacific was most actively monitored for microplastics and showed comparatively high levels in the global context, while the Mediterranean Sea was most frequently monitored for macroplastics. Of the 65 extracted mean abundances of microplastics in seawater from the North Pacific, two (3.1%) exceeded the lowest predicted no-effect concentration (PNEC) proposed thus far. However, in the context of business-as-usual conditions, the PNEC exceedance probability may be expected to reach 27.7% in the North Pacific in 2100. The abundance of marine plastics in seawater, which reflects the current pollution status and marine organisms' waterborne exposure levels, is a useful indicator for marine plastic pollution. For regional and global assessments of pollution status across space and time, as well as assessment of ecological risk, two microplastic monitoring approaches are recommended along with their key aspects. Although microplastic pollution is closely linked with macroplastics, the monitoring data available for floating macroplastics and more extent to mesoplastics in most ocean basins are limited. A more specific framework for visual macroplastic survey (e.g. fixed minimum cut-off size, along with survey transect width and length according to survey vessel class) is required to facilitate data comparison. With the implementation of standardised methods, increased efforts are required to gather monitoring data for microplastics and—more importantly—floating macroplastics in seawater worldwide.
显示更多 [+] 显示较少 [-]