Particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids during the haze period in the megacity of Shanghai
2018
Guo, Mengjie | Lyu, Yan | Xu, Tingting | Yao, Bo | Song, Weihua | Li, Mei | Yang, Xin | Cheng, Tiantao | Li, Xiang
This study presents the particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids (PFAAs) during the haze period. Size-segregated haze aerosols were collected from an urban location in Shanghai using an eight-stage air sampler. The samples were analyzed for eight PFAAs using ultra-high-performance liquid chromatography tandem triple quadrupole mass spectrometry. The quantification results showed that the concentrations of particle-bound Σ 8PFAAs ranged from 0.26 to 1.90 ng m⁻³ (mean: 1.44 ng m⁻³). All of the measured PFAAs particle size distributions had a bimodal mode that peaked respectively in accumulation size range (0.4 < Dp < 2.1 μm) and coarse size ranges (Dp > 2.1 μm), but the width of each distribution somewhat varied by compound. The emission source, molecular weight, and volatility of the PFAAs were important factors influencing the size distribution of particle-bound PFAAs. Of these compounds, PFUnDA presented a strong accumulation in the fine size range (average 75% associated with particles <2.1 μm), followed by PFOA (69%) and PFDA (64%). The human risk assessment of PFOS via inhalation was addressed and followed the same pattern as the size distribution, with a 2-fold higher risk for the fine particle fraction compared to the coarse particle fraction at urban sites. Approximately 30.3–82.0% of PFAA deposition (∑PFAA: 72.5%) in the alveolar region was associated with particles <2.1 μm, although the contribution of fine particles to the total PFAAs concentration in urban air was only 28–57% (∑8PFAAs: 48%). These results suggested that fine particles are significant contributors to the deposition of PFAAs in the alveolar region of the lung.
显示更多 [+] 显示较少 [-]