Effectiveness of Potassium Ferrate (K₂FeO₄) for Simultaneous Removal of Heavy Metals and Natural Organic Matters from River Water
2010
This study has investigated how to simultaneously remove both heavy metals (Cu, Mn, and Zn) and natural organic matters (NOM; humic acid and fulvic acid) from river water using potassium ferrate (K₂FeO₄), a multipurpose chemical acting as oxidant, disinfectant, and coagulant. In water sample including each 0.1 mM heavy metal, its removal efficiency ranged 28-99% for Cu, 22-73% for Mn, and 18-100% for Zn at the ferrate(VI) doses of 0.03-0.7 mM (as Fe). The removal efficiency of each heavy metal increased with increasing pH, whereas an overall temperature did not make any special effect on the reaction between the heavy metal and ferrate(VI). A high efficiency was achieved on the simultaneous treatment of heavy metals (0.1 mM) and NOM (10 mg/l) at the ferrate(VI) doses of 0.03-0.7 mM (as Fe): 87-100% (Cu), 31-81% (Mn), 11-100% (Zn), and 33-86% (NOM). In the single heavy metal solution, the optimum ferrate dose for treating 0.1 mM Cu or Mn was 0.1 mM (as Fe), while that for treating 0.1 mM Zn was 0.3 mM (as Fe). In the mixture of three heavy metals and NOM, on the other hand, 0.5 mM (as Fe) ferrate(VI) was determined as an optimum dose for removing both 0.1 mM heavy metals (Cu, Mn, and Zn) and 10 mg/l NOM. Prior to the addition of ferrate(VI) into the solution of heavy metals and NOM (HA or FA), complexes were formed by the reaction between divalent cations of heavy metals and negatively charged functional groups of NOM, enhancing the removal of both heavy metals and NOM by ferrate(VI).
显示更多 [+] 显示较少 [-]