A study of the thermal behaviour of exposed karst water systems in a mountainous area of Zigui County, Hubei Province, Central China | Etude du comportement thermique des systèmes d’eau karstique affleurants dans une zone montagneuse du comté de Zigui, Province de Hubei, Chine centrale Estudio del comportamiento termal de los sistemas de agua kárstica expuestos en una zona montañosa del condado de Zigui, provincia de Hubei, China central 湖北省秭归县山区裸露岩溶水系统热行为研究 Um estudo do comportamento térmico de sistemas expostos de águas cársticas em uma área montanhosa do Condado de Zigui, Província de Hubei, China Central
2021
Temperature, discharge, and stable isotope ratios of five karst springs in a mountainous area of Zigui County, Hubei Province, Central China, were analyzed. The purpose was to illustrate the heat exchanges linked to circulation depth in the exposed karst water systems through the development of a method for estimating heat input and heat flux during a rainstorm. Meteorological water in the study area conformed to a local meteoric water line (δD = 8.37 δ¹⁸O + 12.99) with a mean δ¹⁸O elevation gradient of −4.0‰ km⁻¹, which was used to estimate mean circulation depths of 209–686 m. The mean spring temperatures defined a vertical gradient of −5.4 °C km⁻¹, which resembled that of the stable atmosphere of the Earth, indicating that the thermal response patterns are mainly controlled by surface air temperature. Thermal convection after rainfall events dominated heat exchange between baseflow and recharge water, leading to a warmer and colder recharge during summer and winter, respectively, whereas thermal conduction dominated the heat exchange only between groundwater, surrounding geology, and the interface air under a condition of no rainfall, resulting in only small temperature variations of the baseflow. Successful application of the method for estimating heat exchange showed that the characteristics of shallow circulation, strong karstification, and well-developed epikarst readily allowed disruption of the thermal balance of the Yuquandong system, resulting in a poor heat regulation capacity, a larger variation of heat input, a lower mean heat flux, and lower baseflow temperatures compared to those of the Dayuquan system.
显示更多 [+] 显示较少 [-]