In vitro avian bioaccessibility of metals adsorbed to microplastic pellets
2020
Microplastics are known to be associated with co-contaminants, but little is understood about the mechanisms by which these chemicals are transferred from ingested plastic to organisms. This study simulates marine avian gastric conditions in vitro to examine the bioaccessibility of authigenic metals (Fe, Mn) and trace metals (Co, Pb) that have been acquired by polyethylene microplastic pellets from their environment. Specifically, different categories of pellet were collected from beaches in Cornwall, southwest England, and exposed to an acidified saline solution of pepsin (pH ∼ 2.5) at 40 °C over a period of 168 h with extracted metal and residual metal (available to dilute aqua regia) analysed by ICP-MS. For Fe, Mn and Co, kinetic profiles consisted of a relatively rapid initial period of mobilisation followed by a more gradual approach to quasi-equilibrium, with data defined by a diffusion model and median rate constants ranging from about 0.0002 (μg L⁻¹)⁻¹ h⁻¹ for Fe to about 7 (μg L⁻¹)⁻¹ h⁻¹ for Co. Mobilisation of Pb was more complex, with evidence of secondary maxima and re-adsorption of the metal to the progressively modified pellet surface. At the end of the time-courses, maximum total concentrations were 38.9, 0.81, 0.014 and 0.10 μg g⁻¹ for Fe, Mn, Co and Pb, respectively, with maximum respective percentage bioaccessibilities of around 60, 80, 50 and 80. When compared with toxicity reference values for seabirds, the significance of metals acquired by microplastics from the environment and exposed to avian digestive conditions is deemed to be low, but studies of a wider range of plastics and metal associations (e.g. as additives) are required for a more comprehensive risk assessment.
显示更多 [+] 显示较少 [-]