Preparation of PCL/Clay and PVA/Clay Electrospun Fibers for Cadmium (Cd+2), Chromium (Cr+3), Copper (Cu+2) and Lead (Pb+2) Removal from Water
2016
Fibrous mats of polymer/clay were obtained by electrospinning method, and their capacity for heavy metals removal from water was evaluated. Four different fibrous mats were prepared from a corresponding polymer/clay solutions. The precursor materials employed were poly-ε-caprolactone, polyvinyl alcohol polymers, kaolin, and metakaolin clays. Raw materials and the prepared fiber mats characterization were carried out using scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, termogravimetric analysis, differential thermal analysis, and differential scanning calorimetry. Elemental composition of the materials was obtained using energy-dispersive X-ray spectroscopy. The environmental applications of polymer/clay materials were tested for water treatment by heavy metals (cadmium (Cd⁺²), chromium (Cr⁺³), copper (Cu⁺²), and lead (Pb⁺²)) sorption. Kinetic adsorption studies were conducted employing heavy metal solutions with initial concentration of 200 mg/L, and the amount of heavy metal adsorbed and kinetics parameters was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES). According to the kinetic data, the adsorption process of Cd⁺², Cr⁺³, Cu⁺², and Pb⁺² onto polymer/clay is favorable for the prepared materials and they follow a pseudo-first-order model according to the kinetic analysis. Additionally, the intraparticle diffusion was evaluated by applying the Morris and Weber model; in order to investigate the contribution of film resistance to the kinetics of the heavy metals adsorption, the adsorption kinetic data was further analyzed by Boyd’s film-diffusion model.
显示更多 [+] 显示较少 [-]