Nano-FeS incorporated into stable lignin hydrogel: A novel strategy for cadmium removal from soil
2020
Liu, Yonglin | Huang, Yongdong | Zhang, Cong | Li, Wenyan | Chen, Chengyu | Zhang, Zhen | Chen, Huayi | Wang, Jinjin | Li, Yongtao | Zhang, Yulong
Strategies for reducing cadmium (Cd) content in polluted farmland soils are currently limited. A type of composite with nanoparticles incorporated into a hydrogel have been developed to efficiently remove heavy metals from sewage, but their application in soils faces challenges, such as organic hydrogel degradation due to oxygen exposure and slow Cd²⁺ release from soil constituents. To overcome these challenges, a composite with superior stability for long-term application in soil is required. In this study, ferrous sulfide (FeS) nanoparticle@lignin hydrogel composites were developed. The lignin-based hydrogels inherited lignin’s natural mechanical and environmental stability and the FeS nanoparticles efficiently adsorbed Cd²⁺ and enhanced Cd²⁺ desorption from soils by producing H⁺. The high sorption capacity (833.3 g kg⁻¹) of the composite was attributed to four proposed mechanisms, including cadmium sulfide (CdS) precipitation via chemical reaction (84.06%), lignin complexation (13.19%), hydrogel swelling (0.61%), and nanoparticle sorption (2.15%). In addition, Fe²⁺ displaced from the composite was gradually oxidized to form solid iron oxide hydroxide, which increased Cd²⁺ sorption. The composite significantly reduced the total, surfactant-soluble, and fixed Cd in heavily and lightly polluted paddy soils by 22.4–49.6%, 13.5–68.6%, and 40.1–16.6%, respectively, in 7 days.
显示更多 [+] 显示较少 [-]