Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India
2020
Singh, Vikas | Singh, Shweta | Biswal, Akash | Kesarkar, Amit P. | Mor, Suman | Ravindra, Khaiwal
Lockdown measures to contain COVID-19 pandemic has resulted in a considerable change in air pollution worldwide. We estimate the temporal and diurnal changes of the six criteria air pollutants, including particulate matter (PM₂.₅ and PM₁₀) and gaseous pollutants (NO₂, O₃, CO, and SO₂) during lockdown (25ᵗʰ March – 3ʳᵈ May 2020) across regions of India using the observations from 134 real-time monitoring sites of Central Pollution Control Board (CPCB). Significant reduction in PM₂.₅, PM₁₀, NO₂, and CO has been found in all the regions during the lockdown. SO₂ showed mixed behavior, with a slight increase at some sites but a comparatively significant decrease at other locations. O₃ also showed a mixed variation with a mild increase in IGP and a decrease in the South. The absolute decrease in PM₂.₅, PM₁₀, and NO₂ was observed during peak morning traffic hours (08–10 Hrs) and late evening (20–24 Hrs), but the percentage reduction is almost constant throughout the day. A significant decrease in day-time O₃ has been found over Indo Gangetic plain (IGP) and central India, whereas night-time O₃ has increased over IGP due to less O₃ loss. The most significant reduction (∼40–60%) was found in PM₂.₅ and PM₁₀. The highest decrease in PM was found for the north-west and IGP followed by South and central regions. A considerable reduction (∼30–70%) in NO₂ was found except for a few sites in the central region. A similar pattern was observed for CO having a ∼20–40% reduction. The reduction observed for PM₂.₅, PM₁₀, NO₂, and enhancement in O₃ was proportional to the population density. Delhi’s air quality has improved with a significant reduction in primary pollutants, however, an increase in O₃ was observed. The changes reported during the lockdown are combined effect of changes in the emissions, meteorology, and atmospheric chemistry that requires detailed investigations.
显示更多 [+] 显示较少 [-]