Soil toxic elements determination using integration of Sentinel-2 and Landsat-8 images: Effect of fusion techniques on model performance
2022
Khosravi, Vahid | Gholizadeh, Asa | Saberioon, Mohammadmehdi
Finding an appropriate satellite image as simultaneous as possible with the sampling time campaigns is challenging. Fusion can be considered as a method of integrating images and obtaining more pixels with higher spatial, spectral and temporal resolutions. This paper investigated the impact of Landsat 8-OLI and Sentinel-2A data fusion on prediction of several toxic elements at a mine waste dump. The 30 m spatial resolution Landsat 8-OLI bands were fused with the 10 m Sentinel-2A bands using various fusion techniques namely hue-saturation-value (HSV), Brovey, principal component analysis (PCA), Gram-Schmidt (GS), wavelet, and area-to-point regression kriging (ATPRK). ATPRK was the best method preserving both spectral and spatial features of Landsat 8-OLI and Sentinel-2A after fusion. Furthermore, the partial least squares regression (PLSR) model developed on genetic algorithm (GA)-selected laboratory visible-near infrared-shortwave infrared (VNIR–SWIR) spectra yielded more accurate prediction results compared to the PLSR model calibrated on the entire spectra. It was hence, applied to both individual sensors and their ATPRK-fused image. In case of the individual sensors, except for As, Sentinel-2A provided more robust prediction models than Landsat 8-OLI. However, the best performances were obtained using the fused images, highlighting the potential of data fusion to enhance the toxic elements’ prediction models.
显示更多 [+] 显示较少 [-]