Photosynthetic and physiological responses to acetochlor in paired near-isogenic lines of waxy maize (Zea mays L.)
2021
Feng, Ying | Zhong, Xuemei | Yao, Yuhan | Shi, Zhensheng | Li, Fenghai | Wang, Hongwei | Lv, Xiangling | Du, Wanli | Zhu, Min | Yang, Hu | Meng, Dexuan
Acetochlor is always used in maize (Zea mays L.) fields as a common pre-emergence herbicide. In this field study, we investigated the effects of acetochlor on the photosynthetic characteristics, chlorophyll fluorescence parameters, and antioxidant enzyme activities in acetochlor-resistant (BWC95) and acetochlor-sensitive (BWC12) near-isogenic lines. We sprayed acetochlor after sowing, using water treatment as the control. After spraying acetochlor, the net photosynthetic rate, stomatal conductance, transpiration rate, and the function of chloroplasts were significantly lower in BWC12 than BWC95, whereas the intercellular CO₂ concentrations and stomatal limitation values were higher. In addition to nonphotochemical quenching, chlorophyll fluorescence measurements obtained using leaves showed that the maximum photochemical efficiency of photosystem II (PSII), actual photochemical efficiency of PSII, photochemical quenching of chlorophyll fluorescence, and electron transport rate were higher in BWC95 than BWC12 after acetochlor treatment. H₂O₂ and O₂˙⁻ levels were higher in BWC12 than BWC95, which resulted in severe membrane lipid peroxidation due to sustained oxidative stress. Thus, the malondialdehyde content increased significantly with the exposure time in BWC12, and the antioxidant enzyme activities were lower in BWC12 than BWC95. The results show that acetochlor resistance is directly related to a high photosynthetic rate and a protective antioxidant enzyme system.
显示更多 [+] 显示较少 [-]