In situ polymerization of magnetic graphene oxide-diaminopyridine composite for the effective adsorption of Pb(II) and application in battery industry wastewater treatment
2019
Wang, Zongwu | Wu, Qing | Zhang, Jing | Zhang, Huan | Feng, Jinglan | Dong, Shuying | Sun, Jianhui
The efficient removal of heavy metals from aqueous environment is imperative and challenging. A novel ternary composite constructed of diaminopyridine polymers, graphene oxide, and ferrite magnetic nanoparticles was designed by a facile in situ polymerization strategy for the removal of Pb(II) from aqueous solution. Detailed characterization of morphological, chemical, and magnetic properties was employed systematically to confirm the formation of the composite material. Batch adsorption experiment studies suggested that the composite was an excellent adsorbent for Pb(II) which was easily collected after use via exposure to an external magnetic field for 30 s. The effects of different parameters such as solution pH, adsorbent dosage, contact time, initial Pb(II) concentration, temperature, and co-existing ions were examined. The maximum adsorption capacity at pH = 5 was estimated to be 387.2 mg g⁻¹ at 298 K by the Langmuir isotherm model, accompanied by favorable adsorption recyclability according to the investigation of regeneration experiments. Thermodynamic studies revealed that the Pb(II) adsorption via our ternary composite was endothermic and spontaneous. The corresponding removal performance for effluent containing Pb(II) from the battery industry was successfully examined. The present results indicated that our designed adsorbent is beneficial to the practical Pb(II) removal in wastewater purification.
显示更多 [+] 显示较少 [-]