Seasonal Denitrification Potential in Wetland Sediments with Organic Matter from Different Plant Species
2007
Bastviken, S Kallner | Eriksson, P. G. | Ekström, A. | Tonderski, K.
Vegetation both physically and biochemically influences denitrification in wetlands. Litter from various plant species supplies various amounts and qualities of organic carbon to denitrifying bacteria, and may thus affect denitrification capacity. We explore whether there is seasonal variation in the denitrification potential in stands of Glyceria maxima, Phragmites australis, Typha latifolia, and Potamogeton pectinatus (the stands differed in terms of which species was predominant). Experiments and measurements investigated whether denitrification potential was related to organic matter and its availability to denitrifying bacteria, suitability for bacterial growth, and amount in the wetland. Availability of organic material, as measured in the slurries, was highest in the G. maxima and P. pectinatus samples, with the highest availability in May and August. However, when the samples were closer to wetland conditions, i.e., intact sediment cores containing litter and organic sediment, the denitrifying capacity was highest in the cores from G. maxima stands, but lowest in P. pectinatus cores. In addition, the denitrification potential of the intact cores was highest in November. Differences in denitrification capacity between the slurries and intact sediment cores, considering the organic material of the plant species and the seasonal pattern, were attributed to differences in the amount of plant litter generated.
显示更多 [+] 显示较少 [-]