Characterization of Tolerance Limit in Spirulina platensis in Relation to Nanoparticles
2013
Lone, J. A. | Kumar, A. | Kundu, S. | Lone, F. A. | Suseela, M. R.
A study was carried out under in vitro conditions to characterize the growth of blue green alga, Spirulina platensis, in standard CFTRI medium containing different nanoparticles of copper oxide (CuO) (50 nm, 10 ppm), zinc oxide (ZnO) (50 nm, 10 ppm), tricalcium phosphate (TCP) (<100 nm, 90 ppm), and hydroxy apatite (HA) (<200 nm, 90 ppm). S. platensis exhibited significant higher growth in standard CFTRI medium containing 90 ppm phosphorus as nanoparticles of TCP and HA. On the other hand, calcium phosphate nanoparticles caused significant reduction in nitrate reductase activity as well as in protein content of the alga. Marked change in chlorophyll-a/b ratio was also noted when phosphorus was supplied through nano tricalcium phosphate and nano hydroxy apatite particles as compared to ionic form (K2HPO 4). The study revealed that the growth of Spirulina in the presence of ZnO nanoparticles was retarded, while no growth was observed with CuO nanoparticles. It was concluded that alga Spirulina showed much sensitivity to nanoparticles of zinc and copper (<50 nm) and was able to tolerate the toxicity of nanophosphate (tricalcium phosphate <100 nm; hydroxy apatite <200 nm). © 2013 Springer Science+Business Media Dordrecht.
显示更多 [+] 显示较少 [-]