Influence of manganese abundances on iron and arsenic solubility in rice paddy soil
2020
Maguffin, Scott C. | Ali, Lena | Tappero, Ryan | Pena, Jasquelin | Rohila, Jai Singh | Mcclung, Anna M. | Reid, Matthew C.
Arsenic (As) mobilization in rice paddy soils under fluctuating redox conditions is influenced by the biogeochemical cycling of redox sensitive elements such as iron (Fe) and manganese (Mn). While rice paddy soils are characterized by a wide range of Mn abundances and Mn/Fe ratios, the consequences of this variability on As mobility in paddy soils irrigated through alternate wetting and drying cycles have received little attention. In this contribution, we developed a complementary set of field and laboratory experiments designed to evaluate the impact of Mn on interconnected Fe and As solubilization in rice paddy soils experiencing wetting-drying cycles through controlled irrigation. Porewater monitoring and synchrotron-based imaging and spectroscopy of thin sections prepared from an Arkansas paddy soil confirmed that As release was primarily governed by reductive dissolution of Fe (oxy)hydroxide phases. Experiments with laboratory soil microcosms amended with the synthetic nanocrystalline Mn oxide, d-MnO2, showed that higher initial Mn/Fe inhibited Fe and As mobilization into porewater relative to unamended soil by up to 95% and 45%, respectively. Geochemical modeling suggests that pH increases driven by microbial MnO2 reduction, in conjunction with microbial Fe- and sulfate-reduction in carbonate-rich porewater, enhanced the precipitation of siderite (FeCO3(s)), mackinawite (FeS(s)), and potentially a Mn(II) arsenate phase. These secondary mineral phases played a greater role in controlling As solubilization than the role of Mn as a redox buffer delaying the onset of reducing conditions. Soil dry-downs in both field and laboratory experiments showed that alternate wetting and drying approaches with a single dry-down can be effective at reducing dissolved As concentrations in porewater through the oxidation of Fe. Differences in soil Mn/Fe ratios had no clear impact on the effectiveness of dry-downs as a strategy to reduce As mobilization.
显示更多 [+] 显示较少 [-]