Molecular mechanism of zero valent iron-enhanced microbial azo reduction
2021
Fang, Yun | Chen, Xingjuan | Zhong, Yin | Yang, Yonggang | Liu, Fei | Guo, Jun | Xu, Meiying
Zero valent iron (ZVI)–microbe technology has an increasing application on the removal of organic pollution, yet the molecular mechanism of microbe respond to ZVI is still a mystery. Here, we established a successive ZVI-enhanced microbial system to remove azo dye (a typical organic pollutant) by Shewanella decolorationis S12 (S. decolorationis S12, an effective azo dye degradation bacterium) and examined the gene expression time course (10, 30, 60, and 120 min) by whole genome transcriptional analysis. The addition of ZVI to the microbial degradation system increases the rate of azo reduction from ~60% to over 99% in 16 h reaction, suggesting the synergistic effect of ZVI and S12 on azo dye degradation. Comparing with the treatment without ZVI, less filamentous cells were observed in ZVI treated system, and approximately 8% genes affiliated with 10 different gene expression profiles in S. decolorationis S12 were significantly changed in 120 min during the ZVI-enhanced azo reduction. Intriguingly, MarR transcriptional factor might play a vital role in regulating ZVI-enhanced azo reduction in the aspect of energy production, iron homeostasis, and detoxification. Further investigation showed that the induced [Ni–Fe] H₂ase genes (hyaABCDEF) and azoreductase genes (mtrABC-omcA) contributed to ZVI-enhanced energy production, while the reduced iron uptake (hmuVCB and feoAB), induced sulfate assimilation (cysPTWA) and cysteine biosynthesis (cysM) related genes were essential to iron homeostasis and detoxification. This study disentangles underlying mechanisms of ZVI-enhanced organic pollution biotreatment in S. decolorationis S12.
显示更多 [+] 显示较少 [-]