Study on formation of 2,4,6-trichloroanisole by microbial O-methylation of 2,4,6-trichlorophenol in lake water
2016
Zhang, Kejia | Luo, Zhang | Zhang, Tuqiao | Mao, Minmin | Fu, Jie
To explore the mechanisms and influence factors on the production of 2,4,6-trichloroanisole (2,4,6-TCA) in surface waters, the 2,4,6-TCA formation potential (FP) test was conducted by incubating the real lake water with the addition of 2,4,6-trichlorophenol (2,4,6-TCP) precursor. Besides bacteria and fungi, two common cyanobacteria and algae species, i.e., Chlorella vulgaris and Anabaena flos-aquae, have been proved to have strong capabilities to produce 2,4,6-TCA, which may contribute the high 2,4,6-TCA FP (152.2 ng/L) of lake water. The microbial O-methylation of 2,4,6-TCP precursor is catalyzed by chlorophenol O-methyltransferases (CPOMTs), and their characteristics were identified by adding inductive methyl donors or excluding microorganisms via ultrafiltration. The results indicated both S-adenosyl methionine (SAM) dependent and non-SAM dependent CPOMTs played important roles; extracellular CPOMTs also participated in the biosynthesis of 2,4,6-TCA. Moreover, investigating the effects of various environmental factors revealed initial 2,4,6-TCP processor concentration, temperature, pH and some divalent metal cations (i.e., Mn2+, Mg2+ and Zn2+) had obvious effects on the production of 2,4,6-TCA.
显示更多 [+] 显示较少 [-]