Catalytic reduction of hexavalent chromium by a novel nitrogen-functionalized magnetic ordered mesoporous carbon doped with Pd nanoparticles
2016
Li, Sisi | Tang, Lin | Zeng, Guangming | Wang, Jiajia | Deng, Yaocheng | Wang, Jingjing | Xie, Zhihong | Zhou, Yaoyu
Hexavalent chromium Cr(VI) is a toxic water pollutant which can cause serious influence to the health of the human and animals. Therefore, developing new methods to remove hexavalent chromium in water attracts great attention of scholars. In our research, we successfully synthesized a new type of magnetic mesoporous carbon hybrid nitrogen (Fe-NMC) loaded with catalyst Pd nanoparticles (NPs), which performed excellent catalytic reduction efficiency toward Cr(VI). The characterization of Pd/Fe-NMC composite was investigated in detail using scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption-desorption measurements. According to the experimental results, we dealt with in-depth discussion and studied on the mechanism of hexavalent chromium removed by Pd/Fe-NMC composite. Furthermore, the batch experiments were conducted to investigate the catalytic reduction ability of composite. It was found that the chromium reduction process conforms to pseudo-first-order reaction kinetics model when the concentrations of chromium and sodium formate were low. It took only 20 min for the Pd/Fe-NMC composite to reach 99.8 % reduction of Cr(VI) (50 mg/L). The results suggested that the Pd/Fe-NMC composite may exhibit significantly improved catalytic activity for the hexavalent chromium reduction at industrial wastewater.
显示更多 [+] 显示较少 [-]