Size distributions of particle-generated hydroxyl radical (·OH) in surrogate lung fluid (SLF) solution and their potential sources
2021
Wu, Na | Lu, Bingqing | Chen, Jianmin | Li, Xiang
Although it is known that increases in ambient particulate matter (PM) levels are associated with elevated occurrence of adverse health outcomes, the understanding of the mechanisms of PM-related health effects is limited by our knowledge of how particle size and composition are altered subsequent to inhalation through respiratory-deposited processing. Here we present a particle-generated hydroxyl radical (·OH) study of the size-resolved particles as particles are inhaled in the human respiratory tract (RT), and we show that accumulation-mode particles are significant factors (71–75%) in ·OH generation of lung-deposited particles using Multiple-Path Particle Dosimetry (MPPD) model. The ability of PM to catalyze ·OH generation is mainly related to transition metals, particularly towards the upper regions of the RT (75%), and to quinones deeper in the lung (42–46%). Identification of this generation ability induced by chemical composition has shown that four potential sources (biomass burning, incomplete combustion, mobile & industry, and mineral dust) are responsible for ·OH generation. With ·OH-forming ability after PM inhalation implicated as the first step towards revealing the subsequent toxic processes, this work draws a connection between the detailed ·OH chemistry occurring on size-resolved particles and a possible toxicological mechanism based on chemical composition and sources.
显示更多 [+] 显示较少 [-]