A gas chromatography/mass spectrometry method for the simultaneous analysis of 50 phenols in wastewater using deconvolution technology
2011
Zhong, WenJue | Wang, Donghong | Xu, Xiaowei | Wang, Bingyi | Luo, Qian | Senthil Kumaran, Satyanarayanan | Wang, Zijian
Phenolic compounds exist widely in the influents and effluents of sewage treatment plants (STPs) and most are un-regulated. In this study, a gas chromatography-mass spectrometry (GC-MS) method for the simultaneous analysis of 50 phenolic compounds in wastewater was developed. Deconvolution technology was used to identify contaminants that are covered by co-extracted materials. A mass spectral library containing all 50 silylated phenolic compounds was first established and used for deconvolution. Twelve typical phenolic compounds were selected to optimize the sample preparation procedures. Solid-phase extraction using a C18 cartridge coupled with an HLB cartridge was used for pre-concentration and dichloromethane was used for elution. The solutes were derivatized and analyzed by GC-MS. The blank and matrix spike recoveries ranged from 57.46% to 136.4% and 47.87% to 114.8%, respectively. Method detection limits ranged from 3.64 to 97.64 ng L−1. The relative standard deviations of all the recovery experiments were lower than 13.6%. The instrument limits of quantification ranged from 0.7 to 87.7 pg. The method has been applied to analyze the influents and effluents of 5 Chinese STPs. Except for regulated phenolic compounds (phenol and 2,4,6-trichlorophenol), three un-regulated phenolic compounds, including 2-chlorophenol, 2,5-dichlorophenol and 2,4-dichloro-3-ethyl-6-nitrophenol were identified in the effluent wastewater. The detected concentrations of un-regulated phenolic compounds could possibly cause environmental effects, indicating that immediate attention is required to prevent complications.
显示更多 [+] 显示较少 [-]