The effect of structural compositions on the biosorption of phenanthrene and pyrene by tea leaf residue fractions as model biosorbents
2014
Xi, Zemin | Chen, Baoliang
To enhance the removal efficiency of polycyclic aromatic hydrocarbons (PAHs) by natural biosorbent, sorption of phenanthrene and pyrene onto raw and modified tea leaves as a model biomass were investigated. Tea leaves were treated using Soxhlet extraction, saponification, and acid hydrolysis to yield six fractions. The structures of tea leaf fractions were characterized by elemental analysis, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The amorphous cellulose components regulated the sorption kinetics, capacity, and mechanism of biomass fractions. The adsorption kinetics fit well to pseudo-second-order model and isotherms followed the Freundlich equation. By the consumption of the amorphous cellulose under acid hydrolysis, both the aliphatic moieties and aromatic domains contributed to total sorption, thus sorption capacities of the de-sugared fractions were dramatically increased (5–20-fold for phenanthrene and 8–36-fold for pyrene). All de-sugared fractions exhibited non-linear sorption due to strong specific interaction between PAHs and exposed aromatic domains of biosorbent, while presenting a relative slow rate because of the condensed domain in de-sugared samples. The availability of strong sorption phases (aromatic domains) in the biomass fractions were controlled by polar polysaccharide components, which were supported by the FTIR, CHN, and SEM data.
显示更多 [+] 显示较少 [-]