Impact of disinfectant on bacterial antibiotic resistance transfer between biofilm and tap water in a simulated distribution network
2019
Zhang, Junpeng | Li, Weiying | Chen, Jiping | Wang, Feng | Qi, Wanqi | Li, Yue
Bacterial antibiotic resistance (BAR) is profoundly important to human health, but the environmental reservoirs of resistance determinants are poorly understood. BAR of biofilm and tap water were analyzed by using a water distribution simulator where different doses of chlorine and chloramine were used in this study. The results revealed that the disinfectants (≥2 mg/L) suppressed antibiotic resistant bacteria (ARB) in tap water and biofilms, while disinfected water and biofilms had a high relative abundance of ARB. The difference of ARB concentration and ARB percentage between the samples obtained from a disinfected pipeline and a non-disinfected pipeline became smaller over time. Because the water supply system is a unidirectional process, it is unclear how planktonic bacteria in water transfer BAR over time, although biofilm is suspected to play a role in this process. Compared with the biofilm samples without disinfectant, the disinfected biofilm had lower ICC and HPC/ICC percentage, lower AOC and AOC/TOC percentage, indicating that the disinfectant inhibited the bacteria growth in biofilm, and the disinfected biofilm had high proportion of non-culturable bacteria and low biodegradability, which affected BAR in biofilms. High throughput sequencing showed that in biofilms, the relative abundance of genera (uncultured_f_Rhodocyclaceae, Brevundimonas, and Brevibacillus in chlorinated systems, and Brevundimonas, Brevibacillus in chloraminated systems) with multiple antibiotic resistance and high abundance (up to 78.5%), were positively associated with disinfectant concentration and ARB percentage. The major prevalent genera in biofilms were also detected in tap water, suggesting that biofilm growth or biofilm detachment caused by external environmental factors will allow the movement of biofilm clusters with higher ARB concentration and percentage into bulk water, thereby increasing the antibiotic resistance of bacteria in tap water.
显示更多 [+] 显示较少 [-]