Prediction of the methane conversion factor (Ym) for dairy cows on the basis of national farm data
2016
Hellwing, A. L. F. | Weisbjerg, M. R. | Brask, M. | Alstrup, L. | Johansen, M. | Hymøller, L. | Larsen, M. K. | Lund, P.
Methane constitutes a significant loss of feed gross energy in ruminants, and there is an ongoing struggle for identifying feed and animal characteristics feasible for documentation of National Greenhouse Gas Inventories. The aim of the current study was to develop a model that predicts the methane conversion factor (Ym, % of gross energy) for dairy cows on the basis of data obtained from a range of our respiration studies, and, subsequently, to use this model to predict Ym for Holstein and Jersey cows on the basis of compiled average national farm data on dry matter intake, yield of energy-corrected milk and dietary composition. In total, 183 observations were compiled, including 41 rations from 10 experiments with Holstein dairy cows where methane emission was measured by means of indirect calorimetry using the same experimental equipment. Two models were developed; one using dry matter intake and feed composition as variables, and one using yield of energy corrected milk and feed composition as variables. The methane conversion factor was significantly reduced with increased content of starch and fat in the ration, whereas neutral detergent fibre content surprisingly did not have a significant effect in any model. On the basis of compiled data from practical Danish farms, the predicted Ym for dairy cows was 6.02% and 5.98% of gross energy intake for Holstein and Jersey cows, respectively, in the model with dry matter intake and 6.13% and 6.00% for Holstein and Jersey cows, respectively, in the model with energy-corrected milk yield. In conclusion, the Intergovernmental Panel on Climate Change default value for Ym of 6.5% overestimates. Ym for both Holstein and Jersey cows fed rations typically used in intensive dairy producing countries in northern Europe.
显示更多 [+] 显示较少 [-]