Mediation effects of different sulfur forms on solubility, uptake and accumulation of Cd in soil-paddy rice system induced by organic carbon and liming
2021
Yao, Aijun | Liu, Ying | Sitong, | Liu, Chong | Tang, Yetao | Wang, Shizhong | Huang, Xiongfei | Qiu, Rongliang
Liming is a safe and effective remediation practice for Cd contaminated acid paddy soil. The fate of Cd can also be strongly influenced by redox chemistry of sulfur. But it is unclear if, to what extent and how the combination of liming and sulfur mediation could further control Cd uptake by paddy rice. A rice cultivation pot experiment was conducted to evaluate the impact of different sulfur forms (S⁰ and SO₄²⁻ in K₂SO₄) on the solubility, uptake and accumulation of Cd in the soil-paddy rice system and how liming and reducing organic carbon mediate the process. Results showed that under neutral soil circumstances achieved by liming, co-application of K₂SO₄ and glucose significantly reduced brown rice Cd by 33%, compared to liming alone. They made it more readily for Cd²⁺ to be precipitated into CdS/CdS₂ or co-precipitate with newly formed FeS/FeS₂/iron oxides. The higher pH balancing capability of K₂SO₄ as well as liming kept the newly formed sulfide or iron containing minerals negatively charged to be more prone to adsorb Cd²⁺, that kept the porewater Cd²⁺ the lowest among all the treatments. Individual K₂SO₄ showed significant promoting effect on soil Cd solubility due to SO₄²⁻ chelation effect. Furthermore, K₂SO₄ had much weaker inhibiting effect on Cd translocation from root to grain, it showed no significant attenuating effect on brown rice Cd. S⁰ containing treatments displayed weaker or no attenuating effect on brown rice Cd due to its strong soil acidification effect. On the basis of liming, organic carbon induced sulfur (K₂SO₄) mediation showed great application potential for safe production on large areas of acid paddy soil contaminated by Cd.
显示更多 [+] 显示较少 [-]