Immobilization and Leaching of Pb and Zn in an Acidic Soil Treated with Zerovalent Iron Nanoparticles (nZVI): Physicochemical and Toxicological Analysis of Leachates
2014
Gil-Díaz, M. | Ortiz, L. T. | Costa, G. | Alonso, J. | Rodríguez-Membibre, M. L. | Sánchez-Fortún, S. | Pérez-Sanz, A. | Martin, M. | Lobo, M. C.
A column experiment was conducted to evaluate the effectiveness of nanoscale zerovalent iron (nZVI) for the in situ immobilization of Pb and Zn in an acidic soil. The impact of nZVI on soil was evaluated by monitoring the physicochemical characteristics of the leachates and their ecotoxicological effects on three species, Vibrio fischeri, Artemia franciscana, and Caenorhabditis elegans. Treatment with nZVI resulted in more effective Pb immobilization in comparison to Zn and reduced the leachability by 98 and 72 %, respectively; the immobilization was stable throughout the experiment. Leachates from nZVI-treated soils showed lower toxicity than leachates from untreated ones. The highest toxicity in treated soils was observed in the first leachate, which presented high values of electrical conductivity due to the leachability of soil ions and those provided by the commercial nanoparticle suspension (Na and Fe). V. fischeri and C. elegans were more sensitive to leachates from nZVI-treated soils polluted with Zn than those from soils polluted with Pb; A. franciscana showed the opposite trend.
显示更多 [+] 显示较少 [-]