A facile synthesis of metal ferrites and their catalytic removal of toxic nitro-organic pollutants
2021
Ramu, A.G. | Salla, Sunitha | Chandrasekaran, Sivaraman | Silambarasan, P. | Gopi, S. | Seo, Seung-yoon | Yun, Kyusik | Choi, Dongjin
Nitrocompounds are the major prime water contaminants. In this investigative study, toxic nitrocompounds (4-nitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol) were removed by using magnetic CuFe₂O₄, CoFe₂O₄, and NiFe₂O₄ material systems. The metal ferrites were synthesized through hydrothermal method and also followed with calcination process. The properties of metal ferrites were confirmed through using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM) studies and results there on were presented. For the first time, the synthesized CuFe₂O₄, CoFe₂O₄, and NiFe₂O₄ material systems were used for the reduction of 4-nitrophenol (NP), 2,4-dinitrophenol (DNP), and 2,4,6-trinitrophenol (TNP) in aqueous medium. The UV–visible spectrometry was employed to monitor the removal of nitro compounds and formation of aminophenol. Among, the three catalysts, the CuFe₂O₄ displayed excellent removal activity for nitrocompounds. The CuFe₂O₄ nanoparticles completely removed the NP, DNP and TNP within 2, 5, 10 min, respectively. The NP reduction reaction follows the pseudo-first-order kinetics. Further, the investigated and proposed CuFe₂O₄, catalyst has given and demonstrated excellent kinetic rate constants 0.990, 0.317, 0.184 min⁻¹ for 4-NP, DNP and TNP respectively, which was very fast kinetic than the already published reports. Also, the aminophenol formation was confirmed for the above mentioned and select nitrocompounds. The obtained results confirm suggest that CuFe₂O₄ nanoparticles based material system could be one of the promising catalysts for nitro compounds removal process.
显示更多 [+] 显示较少 [-]