Assembling 3D hierarchical hollow flower-like Ni@N-doped graphitic carbon for boosting simultaneously efficient removal and sensitive monitoring of multiple sulfonamides
2020
Wang, Yang | Liu, Xueyan | Zhang, Lei
The excessive accumulation of sulfonamides (SAs) drugs makes it imperative to develop novel materials for boosting simultaneously efficient removal and precise monitoring of multiple SAs. Herein, three-dimensional hollow flower-like Ni@nitrogen-doped graphitic carbon (3DHFNi@NGC) was designed/fabricated via a facile one-pot hydrothermal route and subsequent pyrolysis. The resultant 3DHFNi@NGC exhibits a unique 3D hollow hierarchical architecture assembled by a layer-by-layer interlacing of corrugated nanosheets subunits, thereby affording numerous interconnected channels, available internal/external surfaces as well as suitable interior cavities. By virtue of its special architecture and in-situ generated N-doped graphitic carbon along with good magnetism, the 3DHFNi@NGC demonstrates superior sorption performance towards SAs, accompanied by high total saturated adsorption capacity, fast sorption rate and easy magnetic recycling. It is noteworthy that as-constructed 3DHFNi@NGC also exhibits high-sensitive/simultaneous detection of trace multiple SAs combined high performance liquid chromatography (HPLC), together with a low detection limit (0.035–0.071 ng mL⁻¹) and a broad linear range (0.2–100 ng mL⁻¹) as well as high enrichment factors (252 < EFs < 291). These indicate that the smart 3DHFNi@NGC could be a promising candidate for the synchronous remediation and sensitive detection of multiple SAs in aqueous systems, presenting a viable option for sewage treatment and water quality monitoring.
显示更多 [+] 显示较少 [-]