[SnS4]4- clusters modified MgAl-LDH composites for mercury ions removal from acid wastewater
2019
Chen, Lihong | Xu, Haomiao | Xie, Jiangkun | Liu, Xiaoshuang | Yuan, Yong | Liu, Ping | Qu, Zan | Yan, Naiqiang
The high acidity of mercury ions (Hg²⁺) contained wastewater can complicate its safe disposal. MgAl-LDHs supported [SnS₄]⁴⁻ clusters were synthesized for Hg²⁺ removal from acid wastewater. The active sites of [SnS₄]⁴⁻ clusters were inserted into the interlayers of MgAl-LDHs using an ion-exchange method. The experimental results indicated that [SnS₄]⁴⁻/MgAl-LDHs composite can obtain higher than 99% Hg²⁺ removal efficiency under low pH values. The maximum mercury adsorption capacity is 360.6 mg g⁻¹. It indicated that [SnS₄]⁴⁻ clusters were the primary active sites for mercury uptake, existing as stable Hg₂(SnS₄) on the surface of the composite. Under low pH values, such a composite seems like a “net” for HgSO₄ molecules, exhibiting great potential for mercury removal from acid solutions. Moreover, the co-exist metal ions such as Zn²⁺, Na⁺, Cd²⁺, Cr³⁺, Pb²⁺, Co²⁺, and Ni²⁺ have no significant influences on Hg²⁺ removal. The adsorption isotherms and kinetics were also studied, indicating that the adsorption mechanism follows a monolayer chemical adsorption model. The [SnS₄]⁴⁻/MgAl-LDHs composite exhibits a great potential for Hg²⁺ removal from acid wastewater.
显示更多 [+] 显示较少 [-]