Microbial process-oriented understanding of stimulation of soil N2O emission following the input of organic materials
2021
Chen, Zhaoxiong | Tu, Xiaoshun | Meng, Han | Chen, Chen | Chen, Yuejun | Elrys, Ahmed S. | Cheng, Yi | Zhang, Jinbo | Cai, Zucong
Although crop residue return increases upland soil emissions of nitrous oxide (N₂O), a potent greenhouse gas, the mechanisms responsible for the increase remain unclear. Here, we investigate N₂O emission pathways, gross nitrogen (N)-cycling rates, and associated N-cycling gene abundances in an upland soil following the addition of various organic material under aerobic incubation using a combination of ¹⁵N tracing technique, acetylene (C₂H₂) inhibition, and real-time PCR (qPCR) methods. Increased total N₂O emissions following organic material amendment was attributed to both increased nitrification-derived N₂O emissions, following increased ammonia-oxidizing bacteria (AOB)-amoA abundance, and denitrification-derived N₂O emissions, following increased nirS and decreased nosZ abundance. Increasing plant residue carbon (C)/N ratio decreased total N₂O emissions by decreasing the contribution of denitrification to N₂O emissions, potentially due to higher proportions of denitrified N emitted as N₂O than nitrified N emitted as N₂O. We further propose a novel conceptual framework for organic material input effects on denitrification-derived N₂O emissions based on the decomposable characteristics of the added organic material. For slowly decomposing organic materials (e.g., plant residue) with insufficient available C, NO₃⁻-N immobilization surpassed denitrification, resulting in gradual decrease in denitrification-derived N₂O emissions with an increase in mineralization of plant residue C losses. In contrast, available C provided by readily available C sources (e.g., glucose) seemed sufficient to support the co-occurrence of NO₃⁻-N immobilization and denitrification. Overall, for the first time, we offer a microbial process perspective of N₂O emissions following organic material input. The findings could facilitate the improvement of process-orientated models of N₂O emissions and the formulation of appropriate N₂O mitigation strategies for crop residue-amended soils.
显示更多 [+] 显示较少 [-]