Individual PM2.5 exposure is associated with the impairment of cardiac autonomic modulation in general residents
2016
Xie, Yuquan | Bo, Liang | Jiang, Shuo | Tian, Zhenyong | Kan, Haidong | Yigang, | Song, Weimin | Zhao, Jinzhuo
Fine particulate matter (PM₂.₅) is one of the major pollutants in metropolitan areas. The current study was conducted to observe the effects of PM₂.₅ on cardiac autonomic modulation. The participants included 619 men and women aged from 35–75 in a residential area in Shanghai, China. All the participants were divided into four categories according to the distance between their apartments and major road. In addition, individual PM₂.₅ was measured using SIDEPAKTM AM510 (TSI, USA) from 8:00 am to 6:00 pm. At the end of the individual PM₂.₅ measurement, the systolic pressure, diastolic pressure, heart rate (HR), low-frequency (LF), high-frequency (HF), and LF/HF were determined. The association between individual PM₂.₅ level and the above health effects was analyzed using generalized linear regression. The results showed that the average concentration of individual PM₂.₅ was 95.5 and 87.0 μg/m³ for men and women. Residential distance to major road was negatively correlated with the individual PM₂.₅. The results indicated that per 1.0 μg/m³ increase of individual PM₂.₅ was associated with a 2.3 % increase for systolic pressure, 0.3 % increase for diastolic pressure, 0.4 % decrease for LF, and 0.4 % decrease for HF. Nevertheless, there was no statistical association between individual PM₂.₅ and heart rate and LF/HF in the total model. In addition, the similar results were found in men and women excluding a significant association between PM₂.₅ and the heart rate in men. The alterations of cardiac autonomic modulation hinted that PM₂.₅ exposure might be associated with the potential occurrence of cardiovascular disease, such as arrhythmia and ischemic heart diseases.
显示更多 [+] 显示较少 [-]