Biotransformation of Endocrine-Disrupting Compounds in Groundwater: Bisphenol A, Nonylphenol, Ethynylestradiol and Triclosan by a Laccase Cocktail from Pycnoporus sanguineus CS43
2015
Garcia-Morales, R. | Rodríguez-Delgado, M. | Gomez-Mariscal, K. | Orona-Navar, C. | Hernandez-Luna, C. | Torres, E. | Parra, R. | Cárdenas-Chávez, D. | Mahlknecht, J. | Ornelas-Soto, N.
The biodegradation of organic compounds present in water at trace concentration has become a critical environmental problem. In particular, enzymatic oxidation by fungal laccases offers a promising alternative for efficient and sustainable removal of organic pollutants in water. In this work, the biocatalytic ability of laccases from the Pycnoporus sanguineus CS43 fungus was evaluated. A filtered culture supernatant (laccase cocktail) evidenced an enhanced biotransformation capability to remove common endocrine-disruptor compounds (EDCs), such as bisphenol A, 4-nonylphenol, 17-α-ethynylestradiol and triclosan. A biodegradation of around 89–100 % was achieved for all EDCs using synthetic samples (10 mg L⁻¹) and after the enzymatic treatment with 100 U L⁻¹ (50.3 U mg ⁻¹). The biodegradation rates obtained were fitted to a first order reaction. Furthermore, enzymatic biocatalytic activity was also evaluated in groundwater samples coming from northwestern Mexico, reaching biotransformation percentages between 55 and 93 % for all tested compounds. As far as we know this is the first study on real groundwater samples in which the enzymatic degradation of target EDCs by a laccase cocktail from any strain of Pycnoporus sanguineus was evaluated. In comparison with purified laccases, the use of cocktail offers operational advantages since additional purification steps can be avoided.
显示更多 [+] 显示较少 [-]